Name :	
Roll No. :	A Dama (Y Execution 2nd Excitored
Invigilator's Signature :	

CS/BBA(H),BIRM,BSCM/SEM-1/BBA-102/2009-10 2009 MATHEMATICS – I

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) The co-ordinates of the centroid of the triangle whose vertices are (2, 0), (1, -3), (-3, 3) is
 - a) (2,1) b) (0,0)
 - c) (-1, 3) d) (2, 4).
 - ii) If $ax^2 + bx + c = 0$ ($a \neq 0$) then the sum of its roots will be

a)
$$-\frac{b}{a}$$
 b) $\frac{c}{a}$
c) $\frac{a}{b}$ d) $\frac{b}{a}$.

11005

CS/BBA(H),BIRM,BSCM/SEM-1/BBA-102/2009-10 The value of 10_{C_3} is iii) b) 110 100 a) c) 120 d) 90. The sum of the binomial coefficients iv) $C_0 + C_1 + C_2 + \dots + C_n$ is 2^n a) 2 b) 2^{n-1} c) d) none of these. Let the function $f : R \rightarrow R$ defined by V) f(x) = 2x - 1 for x > 2 $= x^{2} - 1$ for $-2 \le x \le 2$ = 3x + 1 for x < -2. then the value of f(-3) is a) 3 b) - 8 c) 5 d) none of these. The value of x for which the equation $2^{x} = 3^{-x}$ is vi) satisfied is a) 1 b) 0 c) - 1 d) none of these. The sequence { 1, 3, 5, 7, \dots } forms an A.P. vii) Which of the following is true ? Common difference = 2a) b) Common difference = 3Common difference = 1c) Common difference = 4. d)

11005

CS/BBA(H),BIRM,BSCM/SEM-1/BBA-102/2009-10

- xiii) The co-ordinates of the middle point of the line joining the points (2, 3) and (3, 2) is
 - a) (2,2) b) (2.5,2.5)
 - c) (3,3) d) none of these.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. In how many ways can 12 examination papers be arranged so that the best and the worst papers may never come together ?
- 3. Find the term independent of *x* in the expansion of $\left(x^2 + \frac{1}{x}\right)^{12}$.
- 4. The arithmetic mean of two numbers is 34 and their geometric mean is 16. Find the numbers.
- 5. Show that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.
- 6. The straight line $\frac{x}{a} + \frac{y}{b} = 1$ is such that a + b = 10. Find the locus of the middle point of that part of the line which is intercepted between the axes.
- 11005

- 7. a) Find the angle between the straight lines x 2y + 1 = 0and x + 3y = 2.
 - b) Find the equation of the circle concentric to $x^2 + y^2 - 4x + 6y - 13 = 0$ and passing through the point (-4, 5).
 - c) Show that the circle $x^2 + y^2 6x 8y + 23 = 0$ does not touch the straight line 4x - 7y + 28 = 0.

5 + 5 + 5

- 8. a) In how many ways can the letters of the word VOWEL be arranged ?
 - i) How many of these begin with V?
 - ii) How many begin with V and do not end with L?
 - b) Show that $1/(\log_a abc) + 1/(\log_b abc) + 1/(\log_c abc) = 1$
 - c) A locomotive engine without a train can run 35 km/hour and its speed is diminished by a quantity which varies as the square root of the number of wagons attached. If with 16 wagons its speed is 15 km/hour, what is the least number of wagons that the engine will fail to move ? Find also the greatest number of wagons that the engine can move. 5 + 5 + 5

5

11005

- b) If α , β be the roots of $ax^2 + bx + c = 0$, then form an equation whose roots are α / β and β / α .
- c) If α , β be the roots of the quation $2x^2 3x + 4 = 0$, then find the value of $\alpha^4 + \beta^4$. 5 + 5 + 5
- 10. a) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. and $(a + b + c) \neq 0$, then show that $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are also in A.P.

b) If *x* is real, find the maximum value of $\frac{x+2}{2x^2+3x+6}$.

- c) Solve for $x : 4^{x} 3.2^{x+2} + 2^{5} = 0.$ 5 + 5 + 5
- 11. a) Let U = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } be the universal set, $A = \{ 1, 2, 3, 4, 5, 6 \}$ and $B = \{ 5, 6, 7, \}$. Then verify that $(A \cup B)^{c} = A^{c} \cap B^{c}$ and $A B = A \cap B^{c}$.
 - b) If a/3 = b/4 = c/7, then prove that a + b = c.
 - c) The sum of *n* terms of an A.P. is n^2 . Find the series. What is the common difference ? Which term is 59 ?

$$5 + 5 + 5$$

11005

