	Utech
Name :	
Roll No.:	On Wanney and trade
Invigilator's Signature :	

CS/BBA (H)/BIRM/BSCM/SEM-2/BBA-202/2011 2011 MATHEMATICS – II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) The value of $\lambda t_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ is
 - a) *e*

b) $\frac{1}{e}$

c) 0

- d) 1.
- ii) The derivative of xe^x is
 - a) e^x
 - b) $e^x(x+1)$
 - c) $e^{x}(x-1)$
 - d) none of these.

2052 [Turn over

CS/BBA (H)/BIRM/BSCM/SEM-2/BBA-202/2011

- iii) If $y = 8x^2$, then $\frac{d^2y}{dx^2}$ is
 - 8 a)

b) 0

16 c)

- none of these. d)
- iv) A function f(x) is said to be an even function if f(-x)is equal to
 - a) f(x)

- c) -f(-x)
- d) none of these.
- The value of $\int_{0}^{1} 2e^{x} dx$ is
 - a) 2e

- b)
- 2(e-1)c)
- d) none of these.
- The co-factor of c is the determinant $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$ is vi)
 - a) $\left(-1\right)^{3+3} \begin{vmatrix} a & h \\ h & b \end{vmatrix}$ b) $\left(-1\right)^{3+2} \begin{vmatrix} a & h \\ h & b \end{vmatrix}$

 - none of these. d)
- The determinant of an orthogonal matrix is
 - 0 a)

b) 1

± 1 c)

d) none of these.

a) (3,0)

b) (9,0)

c) (3,9)

d) none of these.

ix) Rank of the matrix
$$\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$
 is

a) 1

b) (

c) 2

d) none of these.

x) The integration of
$$\int 2^x dx$$
 is

a) $\frac{2^x}{\log_e^2}$

- b) $x 2^{x-1}$
- c) $2^x \log_e^2$
- d) none of these.

xi) A matrix is said to be orthogonal if

- a) $\det A = 0$
- b) $\det A \neq 0$
- c) $A^T A = I$
- d) none of these.

xii) The curve
$$y = |x|$$
 is

- a) differentiable everywhere
- b) discontinuous at x = 0
- c) not derivable at x = 0
- d) none of these.

CS/BBA (H)/BIRM/BSCM/SEM-2/BBA-202/2011

xiii) The function (5x + 3) is increasing in the interval

a) (0, 5)

- b) (-1.5·
- c) $(-\infty, -\infty)$
- d) none of these.
- xiv) The function $u(x, y) = \frac{(x+y)^2}{(x-y)^2}$ is a homogeneous

function of degree

a) 0

b) 1

c) 2

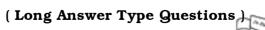
d) none of these.

GROUP – B (Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Verify Euler's theorem for the function $f(x, y) = x^2 + 10xy + y^2$.
- 3. Show that the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ satisfies the equation $A^2 2A 5I = 0$ and hence find A^{-1} .
- 4. Find the rank of the matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 4 & 2 \end{pmatrix}$.
- 5. Find the equation of the parabola whose vertex is (-2, 2) and focus is (-6, 6).
- 6. Solve the following system of equation by Cramer's rule:


$$x + y + z = 8$$

$$x - y + 2z = 6$$

$$3x + 5y - 7z = 14$$
.

7. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, \mathrm{d}x.$

GROUP - C

Answer any three of the following.

- a) If x + y + z = 0, then show that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix} = 0$. 8.
 - Show that the matrix $A = \begin{pmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{pmatrix}$ satisfies the equation A (A - I) (A + 2I) = 0.
 - Compute the inverse of the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$.
- Verify whether the following matrix $A = \frac{1}{3} \begin{pmatrix} -1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ is 9. orthogonal or not. Find A^{-1} .
 - b) Solve the following system of equation by matrix inversion method:

$$x + y + z = 6$$

$$x - y + z = 2$$

$$2x + y - z = 1$$

Find the value of t for which the matrix $\begin{pmatrix} 2 & 0 & 1 \\ 5 & t & 3 \\ 0 & 3 & 1 \end{pmatrix}$ is c)

singular.

CS/BBA (H)/BIRM/BSCM/SEM-2/BBA-202/2011

10. a) Verify whether the function f(x) as defined below is continuous or not at x = 2.

$$f(x) = \begin{cases} x^2 + 4, & x > 2 \\ 8, & x = 2 \\ 3x^2 - 4, & x < 2 \end{cases}$$

- b) Find $\frac{d^2y}{dx^2}$ if $x = \frac{t^2}{1+t}$ $y = \frac{t}{1+t}$.
- c) If $y = \sin\left(m \sin^{-1} x\right)$ then show that $\left(1 x^2\right)y_2 xy_1 + m^2y = 0.$
- 11. a) If $y = a \sin(mx) + b \cos(mx)$ then show that $\frac{d^2y}{dx^2} = m^2y.$
 - b) If $A = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 0 \\ 5 & 1 \end{pmatrix}$ then verify that $(AB)^{-1} = B^{-1}A^{-1}$.
 - c) Prove that $\sqrt{3} \sin x + 3 \cos x$ has a maximum at $x = \frac{\pi}{6}$.
- 12. a) If $u = x^2 + y^2 + z^2$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 2u$.
 - b) Find the equation of the ellipse which meets the straight line $\frac{x}{7} + \frac{y}{2} = 1$ on the *x*-axis and the straight line $\frac{x}{3} + \frac{y}{5} = 1$ on the *y*-axis and whose axes lie along the axes of coordinates. Determine the foci of the ellipse.
 - c) Evaluate $\int e^x \left(\frac{1}{x} \frac{1}{x^2} \right) dx$.

- 13. a) Find the maximum and minimum value of the function $f(x) = x^3 + \frac{1}{x^3}.$
 - b) Prove that $\begin{vmatrix} 1 & b+c & b^2+c^2 \\ 1 & c+a & c^2+a^2 \\ 1 & a+b & a^2+b^2 \end{vmatrix} = (a-b)(b-c)(c-a).$
 - c) Find the area above the *X*-axis bounded by x-2y+4=0, x=1 and x=9.

2052