
 Invigilator's Signature :
 CS /BBA(H)BIRM/BSCM/SEM-2/BBA-202/2013 2013
 MATHEMATICS-II

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Guestions)

1. Choose the correct alternatives for any ten of the following :
i) The value of the

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}} \text { is equal to }
$$

a) 1
b) e
c) 0
d) $\quad \infty$.
ii) The curve $y=|x|$ is symmetric about
a) x - axis
b) y-axis
c) $y=x$
d) none of these.
iii) if $\left(\begin{array}{cc}7 & x+y \\ 8 & x-y\end{array}\right)=\left(\begin{array}{ll}7 & 5 \\ 8 & 3\end{array}\right)$, then the values of x and y are
a) $x=4, y=1$
b) $x=3, y=2$
c) $x=1, y=4$
d) $x=0, y=5$.
iv) A function $f(x)$ is said to be odd if $f(-x)$ is equal to
a) $f(x)$
b) $\quad-f(x)$
c) $\quad-f(-x)$
d) none of these .
v) The rank of the matrix
$\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right)$ is
a) 1
b) 2
c) 3
d) None of these.
vi) The parametric coordinates of the parabola
$y^{2}=4 a x$ are
a) $\left(a t^{2}, 2 a t\right)$
b) $\left(-a t^{2},-2 a t\right)$
c) $\left(-a t^{2}, 2 a t\right)$
d) none of these.
vii) The function $f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y^{2}}$ is homogeneous of degree
a) 1
b) 2
c) 3
d) none of these.

viii) The vectors ($1,2,3$), (2, 0, 1) and (3,2,4) are linearly independent over R (field of real numbers). This statement is
a) true
b) false.
ix) If M is a square matrix of order 3, then its transpose is a matrix of order
a) 2×3
b) 2×2
c) 3×3
d) 3×2.
x) The value of $\frac{\mathrm{d}}{\mathrm{d} x}\left(a^{x}\right)$ is equal to
a) a^{x}
b) $\quad a^{x} \log _{e} a$
c) $\log _{e} a$
d) $\quad x a^{x-1}$.
xi) The value of $\int \frac{d x}{a^{2}-x^{2}}$ is
a) $\left.\frac{1}{2 a} \log \right\rvert\, \frac{x-a}{x+a}$
b) $\quad \frac{1}{2 a} \log \left|\frac{x+a}{x-a}\right|$
c) $\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|$
d) none of these.
xii) If A is an orthogonal matrix, then $\operatorname{det} A=|A|$ is
a) 1 only
b) - 1 only
c) ± 1
d) 0 .

a) 4
b) $4 t$
c) $\frac{1}{4}$
d) none of these.
xiv) If e is the eccentricity of a hyperbola, then
a) $e=0$
b) $e=1$
c) $e>1$
d) $\quad e<1$.
xv) If $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 3\end{array}\right)$, then $A B$ is equal to
a) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
b) $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$
c) $\left(\begin{array}{ll}6 & 0 \\ 0 & 0\end{array}\right)$
d) $\left(\begin{array}{ll}0 & 0 \\ 0 & 6\end{array}\right)$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Solve by Cramer's rule the following simultaneous equations:
$x+y=0$
$y+z=1$
$z+x=-1$
 factor of

$$
\Delta=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| .
$$

4. Find the points on the curve $y=x+\frac{1}{x}$ at which the tangents to the curve are parallel to x-axis.
5. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} \mathrm{~d} x$.
6. Evaluate $\lim _{\mathrm{x} \rightarrow 1}(1-x) \tan \frac{x \pi}{2}$.
7. Evaluate $\int_{0}^{1} e^{x} \mathrm{~d} x$ as the limit of a sum.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $\quad 3 \times 15=45$
8. a) Find the coordinates of the foci of the ellipse

$$
3 x^{2}+4 y^{2}=12
$$

b) Without expanding show that
$\left.\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array} \right\rvert\,=(b-c)(c-a)(a-b)$.

CS/BBA(H)BIRM/BSCM/SEM-2/BBA-202/2013

9. a) Find the equation of the parabola where vertex is at the origin, the axis on the y-axis and which passes through the point ($6,-3$).
b) If $f(x)=(x-1) e^{x}+1$, show that $f(x)$ is an increasing function of x for all positive values of x.
c) Find the area bounded by the ellipse
$4 x^{2}+9 y^{2}=36$ and the x-axis.
10. a) Examine whether the following matrix
$A=\frac{1}{3}\left(\begin{array}{ccc}-1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$
is orthogonal.
b) Show that all rectangles of a given perimeter, the square has the maximum area.
c) Differentiate
$\sin ^{-1} \frac{2 x}{1+x^{2}}$ with respect to $\tan ^{-1} \frac{2 x}{1-x^{2}}$.

11. a) State and prove Euler's theorem for anhomogeneous function of two variables.
b) Integrate $\cos ^{2} x$ with respect to x.
c) Evaluate :

$$
\lim _{x \rightarrow \infty}\left(\frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{n^{3}}\right)
$$

12. a) Find the equation of the ellipse whose latus rectum is 5 and whose eccentricity is $\frac{2}{3}$, the axes of the ellipse being the coordinate axes.
b) Examine the continuity of the following function $f(x)$ at $x=0$, where $f(x)$ is defined by

$$
\begin{aligned}
f(x) & =\frac{\sin 3 x}{2 x} \text {, for } x \neq 0 \\
& =\frac{2}{3}, \text { for } x=0
\end{aligned}
$$

c) If a function $f(x)$ is defined by

$$
f(x)=\frac{1-x}{1+x}, \text { find } f\left(f\left(\frac{1}{x}\right)\right) \text {, for } x \neq 0
$$

