	Uneah
Name:	
Roll No.:	A plant of Exercising and Explana
Invigilator's Signature :	

STATISTICS - II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1.	Cho	ose the correct alternatives for any <i>ten</i> of the following :	
		$10 \times 1 = 10$)
	i)	If x and y are random variables with expectation 3 and	d

5 respectively, then expectation of 3x - 5y + 16 is

- a) 16 b) -16
- c) 2 d) 0.
- ii) Probability of the sample space is
 - a) 1 b) $\frac{1}{2}$
 - c) 0 d) none of these.
- iii) If *A* and *B* are two events such that P(A) = 0.4, $P(A \cup B) = 0.7$ and *A* and *B* are independent, then P(B) is
 - a) 0·2

b) 0·3

c) 0·4

d) 0.5.

2102 [Turn over

iv) If A and B are events with $P(A + B) = \frac{3}{4} P(A) = \frac{2}{8}$ and $P(AB) = \frac{1}{4}$ then find P(A)

-)	1
a)	3

b) $\frac{2}{3}$

c)
$$\frac{1}{4}$$

d) none of these.

v) If the population size is 100, sample size is 4 and S.D. is 16, then the standard error of the sample mean in SRSWR is

a)	8
a)	G

b) 2

d) 1.

vi) The variance of binomial distribution is

`	
a١	np

b) npq

c)
$$npq^2$$

d) $np^2 q$.

vii) A box contains 6 white and 4 red balls. One ball is drawn at random, probability that it is white, is

a)
$$\frac{1}{5}$$

b) $\frac{2}{5}$

c)
$$\frac{1}{2}$$

d) $\frac{3}{5}$.

viii) If 5 coins are tossed simultaneously, the total number of possible outcomes is

a) 10

b) 32

c) 5

d) 16.

ix) E(X) of the probability distribution

 \mathbf{X} :

1

3

4

0.12

5

P(x): 0.05

0.43

2

0.27

0.09

0.04

6

is given by

a) 2.8

b) 1.6

c) 5

d) 7.9.

				/ Utech \
x)	If tw	o cards are drawn from	nav	vell shuffled pack of 52
	card	s. The probability that	both	the cards are of same
	colo	ur is		
	a)	$\frac{1}{4}$	b)	$\frac{3}{4}$
	c)	1	d)	none of these.
xi)	Whe	n two perfect coins are	e tos	sed simultaneously, the
	prob	oability of getting at leas	t one	head is
	a)	$\frac{1}{2}$	b)	0
	c)	$\frac{3}{4}$	d)	none of these.
xii)	The	condition of binomial d	istrib	ution is
	a)	trials are dependent		
	b)	trials are independent		
	c)	trials are equal		
	d)	none of these.		
xiii)	The nega	expectation of a ra	ındor	n variable cannot be
	a)	true	b)	false

c) partially true d) none of these.

a) $\frac{2}{9}$

b) $\frac{4}{3}$

c) $\frac{8}{9}$

- d) $\frac{2}{3}$
- xv) A discrete random variable X follows uniform distribution and takes only the values 6, 8, 11, 12, 17. The probability of p (x=8) is
 - a) $\frac{2}{3}$

b) $\frac{1}{5}$

c) 0

d) $\frac{8}{5}$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Given that $P(A) = \frac{5}{8}$, $P(B) = \frac{5}{8}$, and $P(A \cup B) = \frac{3}{4}$, find P(A/B) and P(B/A). Also show whether A and B are independent.
- 3. From a bag containing 4 white and 6 red balls, different balls are drawn at random. Find the expected number of white balls drawn.
- 4. Using the formulae for binomial distribution, find the probability of rolling at most 2 sixes in 5 rolls of a dice.

2102

- 5. An office switchboard receives telephone calls at the rate of 3 calls per minute on average. What is the probability of receiving no calls in one minute interval ? Given ($e^{-3} = 0.4979$)
- 6. If y = ax + b where a and b are constants, prove that E(y) = a.E(x) + b.

GROUP - C

(Long Answer Type Questions) Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) If *A* and *B* are independent events, then prove that
 - i) \overline{A} and B are also independent,
 - ii) \overline{A} and \overline{B} are also independent. 2+3
 - b) Define probability mass function and probability density function for discrete and continuous random variables respectively.
 - c) The diameter of an electric cable, say, X is assumed to be a continuous random variable with p.d.f. $f(x) = 6x (1-x), 0 \le x \le 1.$
 - i) Check that f(x) is p.d.f.
 - ii) Determine a number *b* such that

$$P(X < b) = P(X > b).$$
 6

Value of X, x	0	1	2	3	4	5	6	7	8
p(x)	k	3 <i>k</i>	5 <i>k</i>	7k	9k	11 <i>k</i>	13k	15 <i>k</i>	17k

i) Determine k.

ii) Find P(X > 3), $P(X \ge 3)$.

8

b) A die is thrown 60 times with the following results :

Face:	1	2	3	4	5	6	Total
Frequency:	6	10	8	13	11	12	60

Are the data consistent with the hypothesis that the die is unbiased?

{ Given
$$\chi^2 = 11.07$$
 for 5 $d.f.$ }

9. a) State and prove Bayes' theorem.

7

- b) Two identical boxes contain 5 white, 7 red balls and
 5 white, 5 red balls respectively. One box is chosen at random and a ball is drawn from it. If the ball drawn is found to be white, calculate the probability that it is drawn from the first box.
- c) If A and B are independent events and $P(A) = \frac{2}{3}$, $P(B) = \frac{3}{5}$, find P(A + B), $P(A^c / B)$ and $P(A^c B)$.

3

2102 6

- Deduce the mean and variance of Poisson Distribution. 10. a)
 - The mean I.Q. of a group of children is 90 with a b) standard deviation of 20. Assuming I.Q. is normally distributed, find the percentage of children with I.Q. over 100. Given ϕ (0.5) = 0.6915. 6
- 11. a) A population consists of 4 members 3, 7, 11, 15. Consider all possible distinct samples of size 2 which can be drawn with replacement. Find:
 - i) Population mean,
 - ii) Population S.D.,
 - iii) Mean of the sampling distribution of means.
 - The probability that Asok can solve a problem is $\frac{4}{5}$, that b) Amal can solve is $\frac{2}{3}$ and that Abdul can solve is $\frac{3}{7}$. If all of them try independently, find the probability that the problem will be solved. 7

2102

8