

Invigilator's Signature : \qquad
CS /BBA(H) /BIRM/BSCM/SEM-2 /BBA-203/2012

2012 STATISTICS - II

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as
far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Probability of the sample space is
a) 1
b) 4
c) $\frac{1}{7}$
d) none of these.
ii) If \bar{A} is the complement of the event A, then
a) $\quad P(\bar{A})=1-P(A)$
b) $\quad P(\bar{A})=P(A)$
c) $\quad P(\bar{A})=P(A)-1$
d) none of these.
iii) If a die is rolled thrice, the total number of possible outcomes is
a) 6
b) 216
c) 36
d) none of these.
iv) A box contains 6 white and 4 black balls. One ball is drawn at random, the probability that it is white is
a) $\frac{2}{5}$
b) $\frac{3}{5}$
c) $\frac{4}{5}$
d) none of these.
v) If A and B are two independent events, then $P(A B)$ is equal to
a) $P(A)$
b) $\quad P(B)$
c) $\quad P(A) P(B)$
d) none of these.
vi) In a binomial distribution the mean and standard deviation are 12 and 2 respectively. Then n is
a) 16
b) 18
c) 20
d) none of these.
vii) If a random variable X follows a Poisson ditribution with parameter m, then the mean and variance of the distribution are respectively
a) m and $\frac{1}{m}$
b) $\frac{1}{m}$ and m
c) $\frac{1}{m}$ and $\frac{1}{m}$
d) m and m.
viii) The probability density function (p.d.f. of ar random variable is $f(x)=k x(x-1)$, where

Then the value of k is
a) $\frac{6}{5}$
b) $\frac{1}{2}$
c) $\frac{8}{9}$
d) 1 .
ix) A binomial distribution may be approximated by a Poisson distribution provided
a) n is small and p is large
b) $\quad n$ is large and p is small
c) n is large and p is large
d) n is small and p is small.
x) The expectation of a random variable cannot be negative.
a) True
b) False
c) Partially True
d) None of these
xi) Let X follows normal distribution with mean 10 and variance 25 , then $E(2 x+3)$ is equal to
a) $\frac{5}{4}$
b) $\frac{5}{2}$
c) 5
d) none of these.
xii) Accepting false null hypothesis is a error of
a) Type I
b) Type III
c) Type II
d) Sampling.
a) independent
b) uncorrelated
c) linearly related
d) none of these.
xiv) Critical region is a region of
a) acceptance
b) rejection
c) indecision
d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

$$
3 \times 5=15
$$

2. In a shooting competition, the probability of a man hitting the target is $\frac{1}{5}$. If he fires 5 times, what is the probability of hitting the target at least twice ?
3. There are two identical boxes containing respectively 4 white and 3 red balls \& 3 white and 7 red balls. A box is chosen at random and a ball is drawn from it. Find the probability that the ball is white.
4. Prove that for two discrete random variablex X and Y $E(X+Y)=E(X)+E(Y)$.
5. Find the maximum likelihood estimate for parameter having Poisson distribution.
6. If a random variable X has mean m and stanard deviation σ, show that
$E\left(\frac{x-m}{\sigma}\right)=0$ and $E\left(\frac{x-m}{\sigma}\right)^{2}=1$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) The probability that Asok can solve a problem is $\frac{4}{5}$, that Amal can solve is $\frac{2}{3}$ and that Abdul can solve is $\frac{3}{7}$. If all of them try independently, find the probability that the problem will be solved.
b) If A and B are independent events and $P(A)=\frac{2}{3}$, $P(B)=\frac{3}{5}$, find $P(A+B), P\left(A^{c} / B\right)$ and $P\left(A^{c} B\right)$.
c) If A and B are independent events, then prove that
i) $\quad A^{c}$ and B^{c} are also independent.
ii) $\quad A^{c}$ and B are also independent.

$$
5+4+6
$$

8. a) State Baye's theorem.
b) Urn-1 contains 5 red and 5 black balls, urn-2 contains 4 red and 8 black balls and urn- 3 contains 3 red and 6 black balls. One urn is chosen at random and a ball is drawn. The colour of the ball is black. What is the probability that it has been drawn from urn-3?
c) If A and B are two events not necessarily mutually exclusive, prove that

$$
P(A+B)=P(A)+P(B)-P(A B) . \quad 3+7+5
$$

9. a) The following table gives the number of aircraft accidents that occurred during various days of a week. Find whether the accidents are uniformly distributed over the week.

8

Days	SUN	MON	TUE	WED	THU	FRI	SAT
Nos. of accidents	6	8	8	20	11	9	14

Given : $\Psi^{2}{ }_{6}$, $0.05=12.59$.
b) $\quad X$ is a continuous random variable with probability density function given by
$f(x)=k x(0 \leq x<2)$
$=2 k(2 \leq x<4)$
$=-k x+6 k(4 \leq x<6)$
Find k and mean value of X.

CS/BBA(H)/BIRM/BSCM/SEM-2/BBA气20322012

 viesn10. a) Show that the sample mean is consistent and dunbiased estimate of the population mean but sample variance is consistent but biased estimate of population variance. 8
b) If a random variable X follows normal distribution such that $P(9.6<X<13.8)=0.7008$ and $P(X>9.6)=$ 0.8159 where the standard normal variable Z
satisfies $P(Z<0.9)=0.8159$ and $P(Z<1.2)=$ $0 \cdot 8849$, find the mean and variance of X.
11. a) In a survey of buying habits, 400 women shoppers are chosen at random in supermarket A located in a certain section of the city. Their average weekly food expenditure is Rs. 250 with a standard deviation of Rs. 40. For 400 women shoppers chosen at random in supermarket B in another section of the city, the average weekly food expenditure is Rs. 220 with a standard deviation of Rs. 55. Test at 1% level of significance whether the average weekly food expenditure of the two populations of shoppers are equal.

8
b) The joint probability distribution of the random variables X and Y is shown below :

X	Y	0	1
2	0.05	0.10	0.25
2	0.15	0.05	0.15
4	0.10	0.10	0.05

Find,
i) the conditional distribution of X, given $Y=1$
ii) the conditional distribution of X, given $Y=2$
iii) the probability $P(X+Y>6)$.

