BCA-101

DIGITAL ELECTRONICS

Time Allotted: 3 Hours

Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP A (Multiple Choice Type Questions)

	(Multiple Cho	ice Type Questions)
l.	Answer any ten questions.	$10\times1=10$
(i)	The 10's complement of 03250 is	
	(A) 03251	(B) 96749
	(C) 96750	(D) 32140
(ii)	(AB+BC+CA+1) is equal to	
	(A) 0 ·	(B) 1
	(C) A+B+C	(D) ABC
(iii)	The addition of 3 bits is done by	
	(A) half adder	(B) full adder
	(C) half subtractor	(D) full subtractor
(iv)	(A.A').(A+B+C+D) is	
	(A) 1	(B) 0
	(C) A	(D) A+B+C+D
(v)	A decoder is a combinational circu from n input lines to a maximum of	it that converts binary information
	(A) 2n	(B)2+n
	(C) 2n	(D) n output lines

	((vi)	In a J-K fl	lip flop when	n J = 1 and $K =$	1 and clock = 1	the output will be
--	---	------	-------------	---------------	-------------------	-------------------	--------------------

(A) toggle

(B) 1

(C)0

(D) recalls previous output

(vii)
$$(AB + A'B + A'B')$$
 is equal to

(A) A + B'

(B) A' + B

(C) A + B

(D) 1

(viii) A BCD counter is a

(A) decade counter

(B) a full modules counter

(C) both (A) and (B)

(D) none of these

(ix)
$$X + XY = X$$
. The given expression follows

(A) De Morgan's Law

(B) Associative law

(C) Distributive law

(D) Absorption law

(x) The output of a sequential circuit depends on

(A) present input only

- (B) past input only
- (C) both present and past inputs
- (D) present output only

(xi) Subtracting 1111 from 11000 will result to

(A) 1000

(B) 1100

(C) 1001

(D) 1011

GROUP B (Short Answer Type Questions)

		Answer any three questions.	$3\times5=15$
2.		What is flip flop? Draw a block diagram and state the excitation and characteristics table of D flip flop	5
3.	(a)	$(AC15)_{16} = (?)_{10}$	2.5
	(b)	$(1011001)_2 = (?)_{10}$	2.5
4.		Draw the truth table and logic circuit of a full-Subtractor. Using Karnaugh map find out the expression for difference (d) and borrow (B).	5
5.	(a)	Design a J- K master slave Flip-Flop with circuit diagram and give the truth table.	3
	(b)	Define Flip-Flop and its propagation delay.	2
6.	(a)	Prove that the multiplexer is a universal logic module.	2
	(b)	Use 4-to-1 MUX and other necessary logic gate to design a Full-Subtractor.	3
		GROUP C (Long Answer Type Questions)	
		Answer any three questions.	3×15 = 45
7.	(a)	Briefly discuss the function of a full adder.	3
	(b)	Make a truth table for a full adder.	3
	(c)	Simplify the outputs of a full adder using K-map.	5
	(d)	Realize the simplified logic equations using NAND gate.	4
8.	(a)	What is Multiplexer? Why is it called "Data selector"?	3
	(b)	Draw the block diagram of a digital multiplexer and explain the function.	4

3

[Turn over]

1057

CS/BCA/Odd/Sem-1st/BCA-101/2014-15

(6)	basic gates (AND, OR, and NOT).	
(d)	Implement the expression using a multiplexer $f(A,B,C,D) = \sum m(0,2,3,6,8,9,12,14)$	4
9. (a)	Design a 4-bit up down counter.	5
(b)	Design a Ring Counter	5
(c)	Design a Mod 3 Counter	5
10.(a)	What do you mean race condition in flip-flop?	3
(b).	Design a Master-Slave Flip-flop and discuss its operation.	5
(c)	Design and explain 4 bit Parallel Adder/Subtractor	7
11.	Write short notes on any three of the following:	3×5
(a)	Ripple Counter	
(b)	Encoder	
(c)	Demultiplexer	
(d)	Flip-Flop excitation table	
(e)	Priority checker	

1057