

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCA-101

DIGITAL ELECTRONICS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

$$10 \times 1 = 10$$

- i) The output of AND gates with 3 inputs A, B, C is high when
- A = 1, B = 1, C = 0 b) A = 0, B = 0, C = 0

 - c) A = 1, B = 1, C = 1 d) A = 1, B = 0, C = 1.
- Conversion of the fractional binary number 10010.0100 to decimal is
 - 24.50 a)

b) 18.25

c) 18.40

16.25. d)

1/10009

[Turn over

iii)	Which	of	the	following	expressions	is	in	sum	of
	products (SOP) form?								

- (A+B)(C+D) b) (A)B(CD)
- c) AB(CD)
- d) AB + CD.
- Which of the following examples express the iv) commutative law of multiplication?
 - A + B = B + A
- b) AB = B + A
- AB = BAc)
- d) $AB = A \times B$.
- Which of the following combinations cannot be v) combined into K-map groups?
 - a) Corners in the same row
 - Corners in the same column **b**)
 - Diagonal c)
 - Overlapping combinations. d)
- How is J-K flip-flop made to toggle?
 - J = 0, K = 0a)
- b) J = 1, K = 0
- J = 0, K = 1c)
- d) J = 1, K = 1.
- vii) What is the hold condition of a flip-flop?
 - Both S and R inputs activated a)
 - No active S or R input b)
 - Only S is active c)
 - Only R is active. d)
- viii) How many flip-flops are required to make a MOD-32 counter?
 - a) 3

45 b)

5 c)

6. d)

1/10009

- ix) Which of the following best describes EPROMs?
 - a) EPROMs can be programmed only once
 - b) EPROMs can be erased by UV
 - c) EPROMs can be erased by shorting all inputs to the ground
 - d) All of these.
- x) The bit sequence 0010 is serially entered (right-most bit first) into a 4-bit parallel out shift register that is initially clear. What are the Q outputs after two clock pulses?
 - a) 0000

b) 0010

c) 1000

d) 1111.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- State de Morgan's law and prove it for 2 variables.
 What is full subtractor ? Explain its basic structure.

with logic diagrams and truth table. 1 + 4

4. Implement XOR operation using 2 input NOR gates.

Verify the output for different combinations of inputs.

3 + 2

- 5. Simplify the following Boolean expression: $2\frac{1}{2} + 2\frac{1}{2}$
 - a) $AB + \overline{AC} + A\overline{B}C(AB + C)$
 - b) $\overline{ABC} + \overline{A}B\overline{C} + A\overline{BC} + AB\overline{C}$.
- 6. Obtain the minimal expression for $f = \sum m(1, 2, 4, 6, 7)$ and implement it using logic gates.
- 1/10009

3

[Turn over

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. Using K-map method simplifies the following Boolean expressions: $7\frac{1}{2} + 7\frac{1}{2}$
 - a) $Y = \sum m (8, 10, 11, 12, 13, 14, 15)$
 - b) $Y = \sum m (7, 9, 10, 11, 12, 13, 14, 15).$
- 8. a) State the main difference between combinational circuit and sequential circuit.
 - b) Draw the truth table for a three-input adder. Write the Boolean expression for sum and carry.
 - c) Implement the Boolean expression F = (A, B, C, D)= $\sum (0, 1, 3, 4, 8, 9, 15)$ using 8×1 multiplexer with A, B and D connected to select lines s_2 , s_1 , s_0 respectively. 5 + 5 + 5
- 9. Define flip-flop and write its propagation delay. Draw a block diagram and truth table for JK flip-flop. What is the advantage of JK flip-flop over SR flip-flop? What do you mean by the race around condition? 3 + 5 + 4 + 3
- 10. a) What is the difference between synchronous and asynchronous counters?
 - b) Design a decimal to binary encoder.
 - c) What do you mean by ring counter? 5 + 5 + 5
- 11. Write short notes on any three of the following: 3×5
 - a) Ripple counter
 - b) PROM & EPROM
 - c) Shift register
 - d) 4-bit parallel adder subtractor
 - e) Encoder.