

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCA-101
DIGITAL ELECTRONICS

Time Allotted: 3 Hours

::

Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

Choose the correct alternatives for the following :

 $10 \times 1 = 10$

- The Boolean equation of AND operation is
 - a) $Y = \overline{A}$

$$\forall b Y = AB$$

c)
$$Y = A + B$$

- d) None of these.
- ii) The logical expression Y = A + AB is equivalent to

$$(a) Y = A$$

b)
$$Y = AB$$

c)
$$Y = \overline{AB}$$

d)
$$Y = A + B$$
.

- iii) The BCD equivalent of 57 is
 - a) /111001

١٥١١١١ كرم

d) 10001010.

http://www.makaut.com

9	iv)		the		code,	the	dec	imal	number	123	is	
		a)	110	011			b)	СЗ				
		de	/	0100	11		d)	842	1001000	1		
	v)	A carry look-ahead adder is frequently used for										
		addition, because it										
		a)	is f	aster			b)	is m	ore accur	ate		
		c)	use	s fewe	er gates		d)	cost	s less.			
	vi)	A combinational circuit is one in which the output depends on the										
		a) input combination at a time										
		b) previous output and input combination										
		c)	c) previous input and input combination at a time									
		d) present output and previous output.										
	vii)	Each individual term in standard SOP form is called as										
		a)	Max	k-term			b)/	Min-	term			
		c)	Mid	-term			d)	None	of these.			
	viii)	A decoder with 64 output lines has data										
inputs.												
		a)	64				b)	1				
	~	c	6				d)	none	of these.			
1	x) '	The	The number of flip-flops required to build a Mod-15									
			ounter is									
	2	1)	4			1	b)	5				
	0	:)	6				d)	7.				

x) The race around condition will be avoided by

- a) J-K flip-flop
- b) S-R flip-flop
- c) Master-Slave flip-flop
- d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. Draw a full adder circuit as combination of 2 half adders.
- 3. State De Morgan's law and prove it for 2 variables.
- 4. a) Evaluate (7352)₁₀ (9456)₁₀ using 9's complement.
 - b) State Duality principle.
- 5. Minimize the following Boolean expression using K-map.

 $F(A, B, C, D) = \sum (0, 1, 3, 6, 8, 10, 11, 13, 15).$

6. Design a 4-bit parallel-in parallel-out (PIPO) shift register.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Represent the decimal number 45 in
 - (i) Hexadecimal code
 - (ii) Gray code
 - (iii) BCD code.
 - b) Which gates are called universal gates and why?
 - c) Design a 2 × 4 decoder. Giver truth table and draw circuit diagram using basic gates.

d) Implement the expression using a Multiplexer. $F(A, B, C, D) = \sum (0, 1, 4, 5, 7, 9, 11, 13, 15)$.

3+5+4+3

- 8. a) What is combinational circuit?
 - b) Differentiate between combinational and sequential circuits.
 - Explain the functionality of clocked JK flip-flop. Give truth table and diagram.
 - d) Convert SR to JK flip-flop.

2+3+5+5

- 9. a) What is register?
 - b) Design an decimal to binary encoder.
 - c) What do you mean by Johnson counter?
- 10. What do you mean by race around condition in flipflop? Design a J-K flip-flop and discuss its operation.

 Design and explain the functioning of BCD adder circuit.

 5 + 5 + 5
- 11. Write short notes on any three of the following: 3×5
 - a) Universal Gate
 - b) Multiplexer
 - c) PAL and PLA
 - d) Excitation Table
 - e) Full adder using Half-adder.