

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCAC 102 Digital Electronics

UPID: 100048

Time Allotted: 3 Hours

Full Marks:70

The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

		and the delication :	[1 x 10 = 10]
1.		wer any ten of the following: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$. (this equation represents which boolean property	
	(0)	(y+2) = (x+y) + (x+2). (with equation representation) the sum terms	
	(III)		
		Draw the block diagram of half adder	
		convert (30) ₁₀ to its equivalent BCD	
		The other name of bistable-multivibrators is	
		y = A.B The dot identifies	
		proof that yx + x = x	
		SOP is formed by considering all the minterms, whose output is	
		According to DE Morgan's law, Inverting the inputs of the AND gate convert it intogate	
	(XI)	Assume number is using 32-bit format which reserve 1 bit for the sign, 15 bits for the integer part and fractional part.	16 bits for the
		Then, -43.625 is represented in fixed point representation as	
	(XII)	Y = (A.B)* represents which gate	
		Group-B (Short Answer Type Question) Answer any three of the following	[5×3=15]
2.	Wh	at is Floating-Point Representation ? Give example	[5]
3.	Wri	te the three basic gates	[5]
4.	Dis	cuss the two universal gates	[5]
5.	Def	fine de morgan's law ? with example	[5]
6.	Def	fine duality principle with example	[5]
		Group-C (Long Answer Type Question)	
		Answer any three of the following	[15 x 3 = 45]
7.	(a)	Define the two universal gate with proper symbol and truth table	[8]
	(b)	Write the two special gate with proper symbol and truth table	[7]
8.		Explain the following Axioms a)Closure Property b)Identity element c)Commutative property d)Cardinality Bound.	[8]
		Discuss the following axioms and show that it is true a) Distributive Property b) Complement Element	[7]
9.	(a)	Write any two non weighted code in details	[8]
	(b)	Discuss BCD code and any two alphnumeric codes	[7]
10.	(a)	Implement OR , AND, NOT and NOR using NAND gate	[8]
	(b)	Implement EX-NOR and NAND using NOR gate	[7]

11. Simplify the following expression using K-map method a) $y = m_1+m_5+m_{10}+m_{11}+m_{12}+m_{13}+m_{15}$

b) y ABCD + AB'C'D' + AB'C +AB

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से

https://www.makaut.com