# CS/BCA/SEM-1/BCA-101/2011-12 2011

## DIGITAL ELECTRONICS

Time Allotted: 3 Hours

Full Marks: 7(

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

#### GROUP - A

# ( Multiple Choice Type Questions )

| 1. Choose the correct alternatives for any ten of the following: |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

 $10 \times 1 = 10$ 

- i) (A + A'B + B') is equal to
  - a) A

b) B'

c) 1

- d) 0.
- ii) (10110) is equivalent to
  - a) 20

b) 22

c) 24

- d) 18.
- iii) A BCD counter is an example of
  - a) a decade counter
  - b) a full modules counter
  - c) both (a) and (b)

http://www.makaut.comne of these.

# CS/BCA/SEM-1/BCA-101/2011-12

| iv                                         | ) T<br>a                                         | The output of a gate is LOW if and only if all its inputs are HIGH. It is true for |       |                    |  |  |
|--------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|-------|--------------------|--|--|
|                                            | a                                                | AND                                                                                | b)    | XNOR               |  |  |
|                                            | c)                                               | NOR                                                                                | d)    | NAND.              |  |  |
| v)                                         | De-Morgan's law states that                      |                                                                                    |       |                    |  |  |
|                                            | a)                                               | $(A + B)' = A' \cdot B'$                                                           | b)    | (A + B)' = A' + B' |  |  |
|                                            | c)                                               | $(\mathbf{A} \cdot \mathbf{B})^t = \mathbf{A}^t \cdot \mathbf{B}^t$                | d)    | both (a) and (c).  |  |  |
| vi) The complement of a variable is always |                                                  |                                                                                    |       |                    |  |  |
|                                            | a)                                               | 0                                                                                  |       |                    |  |  |
|                                            | b)                                               | 1                                                                                  |       |                    |  |  |
|                                            | c)                                               | equal to the variable                                                              |       |                    |  |  |
|                                            | d)                                               | the inverse of the var                                                             | iable | •                  |  |  |
| vii)                                       | 2's complement of '101011' is                    |                                                                                    |       |                    |  |  |
|                                            | a)                                               | 010100                                                                             | b)    | 010011             |  |  |
|                                            | c)                                               | 101001                                                                             | d)    | 010101.            |  |  |
| viii)                                      | Wł                                               | What is the ASCII code of 'A'?                                                     |       |                    |  |  |
|                                            | a)                                               | 98                                                                                 | b)    | 0100               |  |  |
|                                            | c)                                               | 1100                                                                               | d)    | none of these.     |  |  |
| ix)                                        | 4-bit register can store                         |                                                                                    |       |                    |  |  |
|                                            | a)                                               | a bit at a time                                                                    | b)    | a byte at a time   |  |  |
|                                            | c)                                               | a nibble at a time                                                                 | d)    | none of these.     |  |  |
| x)                                         | x) In toggle state of JK Flip-Flop               |                                                                                    |       |                    |  |  |
|                                            | a) present output is opposite of previous output |                                                                                    |       |                    |  |  |
|                                            | b)                                               |                                                                                    |       |                    |  |  |
|                                            | c) both (a) and (b)                              |                                                                                    |       |                    |  |  |
|                                            | d)                                               | none of these.                                                                     |       |                    |  |  |

- xi) Full adder can add
  - a) two binary numbers b) three binary numbers
  - c) four binary numbers d) none of these.
- xii) MOD 10 counter can count up to
  - a) 9

b) 10

c) 8

d) none of these.

#### GROUP - B

## ( Short Answer Type Questions )

Answer any *three* of the following.  $3 \times 5 = 15$ 

- State and prove De-Morgan's theorems.
- 3. Express the Boolean function  $F = AB + \overline{A}C$  in a product of maxterm form.
- 4. Define multiplexer. Why is it called "Data Selector"? 3 + 2
- 5. Use 4:1 MUX and other necessary logic gates to design a full adder.
- 6. What is flip-flop? What is meant by race condition? 1+4

### GROUP - C

# (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

- 7. a) Using K-map method, simplify the following Boolean function and obtain minimal SOP expression:
  - $Y = \sum m$  ( 0, 2, 3, 6, 7 ) +  $\sum$ d ( 8, 10, 11, 15 ).
  - Implement the Boolean Function  $F = (A, B, C, D) = \sum m (0, 1, 3, 8, 9, 15)$  using two 4 to-1 multiplexer and one OR gate.
  - c) Design a gray code to binary converter circuit of 5 bits. What is nibble? 5 + 5 + (4 + 1)

### CS/BCA/SEM-1/BCA-101/2011-12

- 8. a) Design a half adder circuit using minimum number of 2-input NOR gates only. Write Down the truth table and Boolean functions also.
  - b) Convert a D flip-flop to a J-K flip-flop. You can use additional circuiting if required.
  - c) What is full subtractor? Explain its basic structure with proper logic diagrams and truth tables. 5 + 5 + 5
- 9. a) Convert the following:
  - i)  $(AC15)_{16} = (?)_{10}$
  - ii)  $(1011001)_2 = (?)_{10}$
  - b) Discuss about the design of an odd parity generator.
  - c) Explain the concept of parity checking.
  - d) What is the advantage of J-K flip-flop over SR flip-flop.

5 + 5 + 2 + 3

- 10. a) What is the difference between sequential and combinational circuit?
  - b) Describe the propagation delay of a flip-flop.
  - c) Express the Boolean function F = AB + A'C in a product of maxterm form. 5 + 5 + 5
- 11. a) Draw a block diagram and write truth table of a *D* flip-flop.
  - b) Compare asynchronous and synchronous counter.
  - c) Use 4 to 1 MUX and other necessary logic gate to design a full adder. 5+5+5
- 12. Write short notes on any three of the following:  $3 \times 5$ 
  - a) EPROM
  - b) D flip-flop
  - c) Ripple counter
  - d) Encoder
  - e) 4-bit parallel Adder.