Name :	
Roll No. :	Andrew (V Ramahar and Excelored
Invigilator's Signature :	

CS/BCA/SEM-1/BCA-101/2009-10 2009 DIGITAL ELECTRONICS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

 $10 \propto 1 = 10$

- i) A 3-bit synchronous counter uses flip-flops with propagation delay time of 20 ns each. The maximum possible time required for change of state will be
 - a) 60 ns b) 40 ns
 - c) 20 ns d) none of these.
- ii) BCD sutraction is performed by using which complement representation ?
 - a) 1's b) 2's
 - c) 10's d) 9's.
- iii) The SOP form of logical expression is most suitable for designing logic circuits using only

a) XOR gates	b)	NOR gates
--------------	----	-----------

c) NAND gates d) OR gates.

11006

[Turn over

CS/BCA	/SEN	I-1/BCA-101/2009-1	0	Utech		
iv)	The dual of a Boolean function is obtained by					
	a)	interchanging all 0s	and 1s	only		
	b)	changing 0s to 1s or	nly			
	c)	changing 1s to 0s or	nly			
	d)	interchanging all 0s	and 1s	and '+' and '.' signs.		
v)	Whe	en representing in the	e followi nly in o	ing code the consecutive		
	a)	Fyress-3	h)	Grav		
	a)	BCDd)	U) Hev	adecimal		
vi)	Ln a	L K flip flop when		auccillar. and $K = 1$ and clock = 1		
VI)	the output will be					
	a)	toggle				
	b)	1				
	c)	0				
	d)	recalls previous outp	put.			
vii)	ii) $(AB + A'B + A'B)$ is equal to					
	a)	A + B'	b)	A' + B		
	c)	A + B	d)	1.		
viii)	2's (complement of 10101	01 is			
	a)	0101011	b)	10101010		
	c)	1100000	d)	1000001.		
ix)	The	basic fuse technologi	es used	l in PROM are		
	a)	metal links	b)	silicon links		
	c)	<i>p-n</i> junctions	d)	all of these.		
X)	In general, a boolean expression of ($n + 1$) variable can					
	be i	mplemented using a r	nultiple	exer with		
	a)	2^{n+1} inputs	b)	2^{n-1} inputs		
	c)	2^n inputs	d)	None of these.		

- 2. Draw the neat diagram of 3-bits Bi-directional Shift Register using mode control (M). When M is logic zero then left shift and right shift for M is logic one.
- 3. Design 2-bit Gray-Binary converter using basic logic gates with proper truth table.
- 4. Draw the logic diagram and truth table of J Kf/f. Why is J KF/F much more versatile that S RF/F?
- 5. What is a full subtractor ? Explain its basic structure with proper logic diagrams & truth tables. 1 + 4
- 6. Realize the function $f(A, B, C) = \Sigma m(1, 3, 5, 6)$ by a multiplexer. Discuss the operation logic.

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \propto 15 = 45$

7. a) Using *K*-map method minimize the following expression :

 $F\left(w,\,x,\,y,\,z\right)=m\,\Sigma\left(\,1,\,5,\,6,\,12,\,13,\,14\,\right)+d\,\Sigma\left(2,\,4\right).$

- 8
- b) Implement Ex-OR gate using NAND Gate and NAND gate using NOR gate. $3\frac{1}{2} + 3\frac{1}{2}$
- 8. a) Design and implement Mod-6 synchronous counter considering lock out problem. Is the counter self-starting? 8 + 1
 - b) Explain the difference between Ring and Johnson Counter with proper state diagram and circuit diagram.

6

[Turn over

11006

- 9. a) Explain the concept of parity checking.
 - b) Discuss about the design of an odd parity generator.
 - c) What is biased exponent in relation to Floating Point Representation (FPR)?
 - d) Represent (-1101011) in Floating Point Representation (FPR) for a 32-bit CPU. 3+4+3+5
- 10. What do you mean by race condition in flip-flop ? Design a*j k* flip-flop and discuss its operation. Design and explain the functioning of the 4-bit adder-subtractor circuit.

3 + 5 + 7

- 11. Write short notes on any *three* of the following : $3 \propto 5$
 - a) Universal gates
 - b) Decoder
 - c) Shift Register
 - d) Flip-flop excitation table
 - e) Ripple counter.

11006