

CS/BCA/SEM-1/BM-101/2010-11
 2010-11 MATHEMATICS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :
i) $\quad \lim _{x \rightarrow 0}(1+x)^{1 / x}=$?
a) 1
b) 0
c) $\frac{2}{3}$
d) e.
ii) If α, β, χ be the roots of the equation $x+y n=2$ then $\Sigma x^{2}=$
a) 0
b) 14
c) -14
d) 4 .

CS / BCA/SEM-1/BM-101/2010-11
iii) An element x in a ring R is zero divisor if
a) $x \cdot b=0$
b) $\quad x \cdot b=0$, for some non zero element b in R
c) $\quad x . b \neq 0$, for all element b in R
d) none of these.
iv) The value of $\int_{-1}^{2}|x| \mathrm{d} x$ is
a) 3
b) 5
c) $\frac{5}{2}$
d) 0 .
v) The value of $\frac{d}{d x}\left(\log _{e} x\right)$ is equals to
a) $\frac{1}{x}$
b) $\log \left(\frac{1}{x}\right)$
c) $\left(\frac{1}{n}\right) \log _{a} e$
d) $\quad a \log e$.
vi) If $A=\{2,4,6\}$ and $B=\{1,3,5,7\}$, then $A \cup B$ is
a) $\{0\}$
b) $\quad\{1,2,3,4,5,6,7\}$
c) $\quad\{1,2,4,5,6,7\}$
d) $\{0,2\}$.
vii) If A is a square matrix then
a) $\quad A+A^{T}$ is symmetric
b) $\quad A+A^{T}$ is skew symmetric
c) $\quad A-A^{T}$ is symmetric
d) $\quad A-A^{T}$ is skew symmetric.
viii) The matrix $A=\left(\begin{array}{lr}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$ is on
a) orthogonal matrix
b) idempotent matrix
c) identity matrix
d) none of these.
ix) If $y=2$ at and $x=a t^{2}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $t=1$ is
a) 1
b) $2 a$
c) -1
d) $\quad 2 a^{2}$.
x) The polar form of the equation $x^{2}+y^{2}-8 y=0$ is
a) $r=8 \cos \theta$
b) $r=8 \sin \theta$
c) $r^{2}=8 \cos \theta$
d) none of these.
xi) If $A=\{1,2,3,4,8\}, B=\{2,4,6,7\}$ then $A \Delta B$ is
a) $\{2,4\}$
b) $\quad\{1,2,3,4,6,7,8\}$
c) ϕ
d) $\quad\{1,3,6,7,8\}$.
xii) The diagonal elements of a real skew-symmetric matrix are
a) 1
b) -1
c) 2
d) 0 .
2. A function $f(x)$ is defined as follows

$$
\begin{aligned}
f(x) & =x^{2} & & \text { when } 0<x<1 \\
& =x & & \text { when } 1 \leq x<2 \\
& =2-x & & \text { when } 2 \leq x<3
\end{aligned}
$$

Show that the $f(x)$ is continuous at $x=2$.
3. Evaluate $\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} \mathrm{~d} x$.
4. If α, β, γ be the roots of the cubic $x^{3}+p x+q=0$, then find the equation whose roots are

$$
\frac{\beta+\gamma}{\alpha^{2}}, \frac{\gamma+\alpha}{\beta^{2}}, \frac{\alpha+\beta}{\gamma^{2}} .
$$

5. Prove that the ring of matrices of the form $\left[\begin{array}{cc}x & y \\ -y & x\end{array}\right]$ of real number is a field.
6. In a survey concerning the smoking habits of consumers it was found that 55% smoke cigarette-A, 50% smoke cigarette- $B, \quad 42 \%$ smoke cigarette- $C, \quad 28 \%$ smoke cigarette-A \& B, 20\% smoke cigarette-A \& C, 12\% smoke cigarette- B \& C and 10% smoke all the three cigarette. What percentage do not smoke ?

7. a) If $y=\sin \left(m \sin ^{-1} x\right)$, then show that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0 .
$$

b) If α, β, γ are the 3 roots of $x^{3}+p x^{2}+q x+r=0$ obtain the value of $\sum(\alpha-\beta)^{2}$.
c) Evaluate $\int \frac{1}{x^{2}} e^{1 / x} \mathrm{~d} x$.
8. a) If $u=\frac{y}{z}+\frac{z}{x}+\frac{z}{y}$ then prove that, $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
b) If by a rotation of rectangular co-ordinate axes without change of origin expressions $a x+b y$ and $c x+d y$ are transformed into $a^{\prime} x^{\prime}+b^{\prime} y^{\prime}$ and $c^{\prime} x^{\prime}+d^{\prime} y^{\prime}$. Show that $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=a d-b c$.
c) Reduce the following equation to its canonical form and determine the nature of the conic represented by it :

$$
3 x^{2}-8 x y-3 y^{2}+10 x-13 y+18=0
$$

$$
\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\ldots \ldots+\frac{n}{n^{2}+n^{2}}\right]
$$

b) Using mean value theorem prove the following inequality :

$$
x\left\langle\sin ^{-1} x<\frac{x}{\sqrt{1-x^{2}}}, \text { if } 0<x<1\right.
$$

c) Expand $\sin x$ in power of x in infinite series.
10. a) Solve the equation by Cardan's method :

$$
2 x^{3}+3 x^{2}+3 x+1
$$

b) Evaluate

$$
\int \frac{x^{2} \mathrm{~d} x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}
$$

c) If $y=x^{x-1} \log x$, show that $y_{x}=\frac{(x-1)!}{x}$.
b) If $A=\{a, b, c, d\} B=\{b, c, p, q\}$, then find out $A \times B$, $B \times A$ and $A \Delta B$.
c) Define power set. Find the power set of $\{a, b, c\}$.

