

WEST BENGAL UNIVERSITY OF TECHNOLOGY

BM-201

MATHEMATICS - II

Time Allotted: 3 Hours

Full Marks: 70

 $10 \times 1 = 10$

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP A(Multiple Choice Type Questions)

l.	Answer any ten questions.				
	(i) The differential coefficient of χ^6 with respect to χ^3 is				
	(A) $2x^3$ (B) $2x$ (C) $2x^2$ (D) 2				
	(ii) The degree and order of the differential equation				
$\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} - 3\frac{dy}{dx} = 4 \text{ are}$					
	(A) degree = $\frac{2}{3}$, order = 2 (B) degree = 2, order = 2				
	(C) degree = 2, order = 1 (D) degree = 3, order = 2				

(iii) The series 1-1+1-1+... is (A) convergent with sum 0

(C) divergent

(D) oscillatory

(B) convergent with sum 1

2153

1

Turn Over

CS/BCA/Even/Sem-2nd/BM-201/2015

				•	
	T(x, y) = (x + 2y) (A) (2, 1, -1) In R ³ , the vectors (A) linearly dependent	(x, x - y, y). Th (B) (5, -1, 2) (B) (1, 0, 1), (1, 1), (1, 2)	tion from R ² to R ³ defined by en the image of (1, 2) is (C) (1, 1, 1) (D) (2, 2, 3) 1, 0) and (0, 1, 1) are (B) linearly independent		
	(C) both (A) and (B)		(D) none of these		
(vi)	If $(5,7) = a(1, 1) + b(1, 2)$ the values of a and b are respectively				
	(A) 1, 2	(B) 2, 3	(C) 3, 2	(D) 3, 3	
(vii)	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if				
	$(A) p \ge 1$	(B) p = 1	(C) $p \le 1$	(D) p = 0	
(viii)	$\frac{1}{(D-2)(D-3)}e$	^x is			
	(A) $\frac{e^x}{2}$	(B) $\frac{xe^{2x}}{2}$	$(C) - \frac{xe^x}{6}$	$(D)-\chi e^{3x}$	
(ix) If for a sequence $\{u_n\}$, $\lim_{n\to\infty} u_n = 0$ them					
	(A) $\{u_n\}$ is conve	ergent to 1	(B) $\{u_n\}$ is divergent		
	(C) $\{u_n\}$ is convergent to 0 (D) none of these				
	If S and T be two of the following	· •	ce V, then which		
	$(A) S \cup T$	(B) S-T	(C) T-S	(D) $S \cap T$	
(xi)	(xi) Integrating factor of $ydx - xdy = y^2 \cos y dy$ is				
	$(A)\frac{1}{y^2}$	(B) y	(C) $\frac{1}{y}$	(D) 1	
(xii)	Leibnitz's test is applied to				
	(A) a constant series		(B) a series of positive terms		
	(C) an alternating series		(D) a series of negative terms		
(xiii)	to R ³ defined by				
•	T(x, y) = (x + y, 0) (A) 3	(B) 2	(C) 1	·(D) 0	

2153

CS/BCA/Even/Sem-2nd/BM-201/2015

GROUP B (Short Answer Type Questions)

Answer any three questions.

 $3 \times 5 = 15$

- 2. Solve any two of the following:
 - (a) $y = px + \frac{a}{p}$.
 - (b) $(D^2-4)y=e^{2x}+e^{-4x}$.
 - (c) $(D^2 + 9)y = \cos 3x$.
- 3. Test the convergence of the series

$$\chi + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!} + \dots X > 0.$$

- 4. Let $S = \{(x, y, z) | x + y + z = 0, x, y, z \in \mathbb{R}^3 \}$. Prove that S is a subspace of \mathbb{R}^3 . Find the dimension of S.
- 5. Find the representative matrix of the linear transformation $T: R^3 \longrightarrow R^3$ defined by T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z).
- 6. Define monotone sequence. When is a monotone sequence convergent? Is the following sequence $\{u_n\}$ convergent?

$$\mathbf{u}_{n} = \frac{3n+1}{n+2}.$$

GROUP C(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. (a) Verify whether the differential equation 3+7+5 $e^{y}dx + (xe^{y} + 2y)dy = 0$ is exact.
 - (b) Solve: $x \frac{dy}{dx} 2y = xy^4$.
 - (c) Find the general and singular solutions of $y = px p^2$.

Turn Over

CS/BCA/Even/Sem-2nd/BM-201/2015

- 8. (a) Discuss the convergency of the sequence $\left\{\frac{1}{n}\sin\frac{n\pi}{2}\right\}$.
 - (b) Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a+b=0, a, b, c, d \in R \right\}$. Find a basis and 6 dimension of S.
 - (c) Show that $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\dots$ Is a divergent series.
- 9.(a) Solve: $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} 5y = \sin \log x$.
 - (b) If $\{\alpha, \beta, \gamma\}$ is basis of a real vector space V, show that $\{\alpha + \beta, \beta + \gamma, \gamma + \alpha\}$ is also a basis of V
 - (c) Determine the linear mapping $T:R^3 \longrightarrow R^3$ which maps the basis vectors (0, 1, 1), (1, 0, 1), (1, 1, 0) of R^3 to the vectors (1, 2, 1), (1, 1, 2), (2, 1, 1) respectively. find dim(kerT).
- 10. (a) State D' Alembert's ratio test. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$.
 - (b) Show that the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ converges conditionally. 5
 - (c) Show that the sequence $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}+\sqrt{2}}$,... converges to 2.
- 11.(a) Find the differential equation of all circles touching the axis of x at the origin.
 - (b) Show that the vectors (1, -2, 3), (2, 3, 1) and (-1, 3, 2) form a basis of \mathbb{R}^3 .
 - (c) Give an example to show that union of two sub spaces need not be a sub space of v.