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ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE – 2009 

MATHEMATICS 

SEMESTER - 2 
 

Time : 3 Hours ] [ Full Marks : 70 

 

GROUP – A 

 ( Multiple Choice Type Questions ) 

1. Choose the correct alternatives for any ten of the following : 10 × 1 = 10 

i) If α = ( 1, 0, 3 ) and β = ( – 1, 2, 5 ), then α + 3 β is equal to 

 a) ( – 2, 6, 18 ) b) ( 2, – 6, – 18 ) 

c) ( 2, – 6, 18 ) d) ( – 1, – 3, 5 ).           

ii) The basis of a vector space contains 

a) linearly independent set of vectors 

b) linearly dependent set of vectors 

c) scalars only 

d) none of these.             

iii) Integrating factor of x dx = – y dy is 

a) 1/( xy )  b) 1/( x 2  + y 2  ) 

c) 1/y 2   d) none of these.           
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iv) The infinite series 
∑

n = 1

•
   

1

n p   converges if  

a) p = 1 b) p > 1  

c) p < 1 d) none of these.           

v) The order and degree of the differential equation 



 

d 2 y

dx 2 
 

 2/3
  – 3 

dy

dx 
  = 4 are 

 a) 2, 2  b) 2, 
2
3
  

c) 2, 1  d) 2, 3.           

vi) If the three vectors ( 5, 2, 3 ), ( 7, 3, x ) and ( 9, 4, 5 ) are linearly dependent, then 

x is 

 a) 1  b) 2 

c) 3  d) 4.           

vii) If lim
n ∅ •

  a n  = 0, then the series Σ ( – 1 ) n  a n  is 

 a) convergent b) divergent 

 c)  oscillatory d) none of these.           

viii) The family of curves y = e x ( A cos x + B sin x )  is represented by the differential 

equation 

 a) 
d 2 y

dx 2   = 2 
dy

dx 
  – y b) 

d 2 y

dx 2   = 2 
dy

dx 
  – 2y 

 c)  
d 2 y

dx 2   = 
dy

dx 
  – 2y d) 

d 2 y

dx 2   = 2 
dy

dx 
  + y.           
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ix) The sequence 1, 
1
2
 , 

1
3
  , ... 

1
n
  , ...... converges to 

 a) •  b) 0 

 c)  1 d) 
1
2
  .           

x) The four vectors ( 1, 1, 0, 0 ), ( 1, 0, 0, 1 ), ( 1, 0, a, 0, ) and ( 0, 1, a, b ) are 

linearly independent if  

 a) a π 0, b π 2 b) a π 2, b π 0 

 c)  a π 0, b π – 2 d) a π – 2, b π 0.           

xi) The solution of log 



 

dy

dx
   = ax + by is 

 a) b e – ax  + a e – by  + k = 0 b) b e ax  + a e – by  + k = 0 

 c)  b e – ax  + a e by  + k = 0 d) b e ax  + a e by  + k = 0.           

xii) lim
n ∅ •

 
x n

n
   is equal to  

 a) 0  b) 1 

 c)  – 1 d) none of these.           

xiii) The lower bound of the sequence 








 
 ( – 1 ) n – 1

n!
   ) is 

 a) – 
1
2
   b) 

1
2
  

 c)  1 d) 0.           

xiv) The value of lim
n ∅ •

   log ( 1/n ) is equal to 

 a) 0  b) 1 

 c)  – • d) none of these.           
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GROUP – B 

 ( Short Answer Type Questions ) 

  Answer any three of the following.  3 × 5 = 15 

2. Find the equation of curve whose slope at any point ( x, y ) on it is 2y and which passes 

through the point ( 3, 1 ).  

3. Test for the convergence of the series : 

  x + 
2 2 x 2

2 !
  + 

3 3 x 3

3 !
  + 

4 4 x 4

4 !
  + ......., x > 0. 

4. Examine whether the vectors ( 1, 2, 3, 0 ), ( 2, 1, 0, 3 ), ( 1, 1, 1, 1 ) and ( 2, 3, 4, 1 ) are 

linearly dependent or not. If yes, find among them which are independent. 

5. Solve any three : 

 a) x  
dy

dx
  + y = y 2  log x  

 b) cos 2  x 
dy

dx
  + y = tan x  

 c) y = px – 
a

p
  where p = 

dy

dx
    

 d) ( ) D 2 –2D + 1   y = x e x  where D = 
d
dx

  . 

6. Define the limit of a sequence. Find 

   lim
n ∅ •

 



 

1

n 2 + 
2

n 2 + ... + 
n

n 2 
   . 

GROUP – C 

 ( Long Answer Type Questions ) 

 Answer any three of the following.  3 × 15 = 45 

7. a) Define basis of a vector space V. Show that α  1  = ( 1, 0, 0 ), α 2  = ( 0, 1, 0 ) and 

α 3  = ( 0, 0, 1 ) form a basis of the vector space V 3 .  5 

 b) If { α, β, γ } be a basis of real vector space V and c π 0 be a real number, examine 

whether { α + c β, β + c γ, γ + c α } is a basis of V or not. 5 

 c) Find the value of k for which the vectors ( 1, 2, 1 ), ( k, 1, 1 ) and ( 1, 1, 2 ) in R 3  

are linearly dependent. 5 
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8. Test the convergence of any three of the following series : 3 × 5 = 15 

 a) 1 + 
x

2
  + 

x 2

5
  + 

x 2

10
  + ....... 

 b) 



 

1
3
 

 2
  + 



 

1.2
3.5

 
 2

  + 



 

1.2.3
3.5.7

 
 2
  + ....... 

 c) 
∑

n = 1

α
   



 1 + 

 1

n 
 

 – n
   

 d) 
∑

n = 1

α
   



 

 cos nx

n 2 
   .  

9. Solve any three of the following : 3 × 5 = 15 

 a) 
dy

dx 
  + 

y log y
x 

  = 
y ( log y ) 2

x 2 
   

 b) y = 2 px – p 2  where p = 
dy

dx 
   

 c) e x  sin y dx + ( e x  + 1 ) cos y dy = 0 

 d) ( D 2  – 2D ) y = e x  sin x. 

10. a) Prove that s = { ( 0, 1, 1 ), ( 1, 0, 1 ), ( 1, 1, 0 ) is a basis of R 3 . 

 b) Show that w = { ( x, y, z ) ♦ R  3 /x + y + z = 0 } is a sub-space of R 3  and find a 

basis of w. 

 c) Determine K so that the set S is linearly dependent in R 3   

   S = { ( 1, 2, 1 ), ( k, 3, 1 ), ( 2, k, 0 ) }.  5 + 5 + 5 

11. a) Define the linear sum of two sets of vectors S and T. 

 b) If S and T are two sub-spaces of a vector space V, obtain a relation between rank 

( S ), rank ( T ) and rank ( V ) . 

 c) Let T : R 2  ∅ R 2  be a linear transformation such that T ( 1, 1 ) = ( 2, – 3 ) and  

T ( 1, – 1 ) = ( 4, 7 ). Find the matrix of T. 3 + 6 + 6 
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12. a) Using D' Alembert's ratio test, show that the following series is convergent : 

   x 2  + ( 2 2  / 3.4 ) x 4  + ( 2 2 .4 2  / 3.4.5.6 ) x 6  + ..... • 

 b) Prove that every absolutely convergent series is convergent. 

 c) Show that the following series is convergent : 

   u n  = n 3 + 1  – n 3  in n � [ 1, • ]. 

    

END 


