Name :	Consen
Roll No. :	A Descript Exercision and Explanat
Invigilator's Signature :	

CS/BCA/SEM-2/BM-201/2010 2010 MATHEMATICS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) The basis of a vector space contains
 - a) linearly independent set of vectors
 - b) linearly dependent set of vectors
 - c) scalars only
 - d) none of these.

ii) The solution of
$$\frac{d^2y}{dx^2} = 0$$
 is

a)
$$y = e^x$$
 b) $y = 0$

c) $y = \sin x$ d) $y = \log_e x$.

2153

[Turn over

CS/BCA,	/SEM	I-2/BM-201/2010				
iii)	If $f(3, 1) = x(1, 2) + y(0, 3)$ then the values of x and					
	y ar	e respectively	A change (I Ransinfer and Excident			
	a)	(3, -5)	b)	(3,1)		
	c)	(3, -5/3)	d)	(3, -5/2).		
iv)	$\lim_{n o \infty}$ ($3n+1$) / ($2n-3$) is					
	a)	$\frac{1}{2}$	b)	$\frac{3}{2}$		
	c)	1	d)	$-\frac{1}{3}$.		
v)	The	value of $(1/D^2)(x^3)$ is				
	a)	x^5	b)	$\frac{1}{20}$		
	c)	20	d)	$\frac{1}{20}x^5.$		
vi)	$\sum 1/n^p$ is divergent if					
	a)	$p \le 1$	b)	<i>p</i> > 1		
	c)	<i>p</i> < 1	d)	p = 1.		
vii)	ii) If $P = \{ 2, 4, 6, 7, 8, 9 \}, Q = \{ 1, 2, 6, 9 \}$, then $P - Q$ is					
	a)	$\{4,7,8\}$				
	b)	$\{4,6,8,9\}$				
	c)	{1}				
	d)	$\{2, 4, 6, 7, 8, 9\}.$				

- a)
- b) 3
- 1 c)
- d) none of these.

2153

3

[Turn over

- a) $y = \cos 2x + \sin 2x$
- b) $y = c_1 \cos 2x + c_2 \sin 2x$
- c) $y = c_1 \cos x + \sin 2x$
- d) none of these.

xiii) The general solution of $\log \frac{dy}{dx} = x - y$ is

- a) $e^{y} e^{x} = c$ b) $e^{x} + e^{y} = c$
- c) $e^{x+y} = c$ d) $e^{x-y} = c$.

xiv) If *S* and *T* be two subspaces of a vector space *V*, then which of the following is also a subspace of *V*?

- a) $S \cup T$ b) S T
- c) T-S d) $S \cap T$.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Show that the sequence $\{2 + (-1)^n \ 1/n\}$ is convergent.
- 3. Solve : $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = x^2 + e^{3x}$

- 5. Find the value of the limit $\lim_{n \to \infty} (4n^3 + 6n 7)/(n^3 2n^2 + 1)$.
- 6. Find a basis and the dimension of $S \cap T$, where *S* and *T* are subspaces of R^3 defined by

S = { (
$$x, y, z$$
) $\in R^3 : 2x + y + 3z = 0$ }

and $T = \{ (x, y, z) \in R^3 : x + 2y + z = 0 \}$

GROUP – C

(Long Answer Type Questions)

		A	inswer ai	ny <i>three</i> of the following.	3 × 15 =	- 45
7.	a)	Show	that	$\left\{\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+2}}\right\}$	$\frac{1}{n^2+n}$	is
		converg	ent and	converges to 1.		

- b) Show that the sequence $\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2}+\sqrt{2}}, \dots$ converges to 2. 8+7
- 8. Solve the following equations : 3×5
 - a) $(D^2 2D + 1)y = x \sin x$
 - b) $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{1}{x} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12 \log x}{x^2}$

CS/BCA/SEM-2/BM-201/2010

c)

$$3\frac{\mathrm{d}y}{\mathrm{d}x} + 2\frac{y}{x+1} = \frac{x^3}{y^2}$$

- 9. a) Prove that a subset S of a vector space V over \mathbb{R} is a subspace if and only if $\alpha x + \beta y \in S$ for all $\alpha, \beta \in \mathbb{R}$ and $x, y \in S$.
 - b) Prove that the vectors { (1, 2, 2), (2, 1, 2), (2, 2, 1) } are linearly independent in \mathbb{R}^{3} .
 - c) Find the basis and the dimension of the subspace W of \mathbb{R}^3 where

$$W = \{ (x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \}$$
 5 + 5 + 5

- 10. a) Solve $(px y)(py + x) = a^2p$, by using the substitution $x^2 = u$, $y^2 = v$; where $p = \frac{dy}{dx}$.
 - b) Obtain the general solution and singular solution of the equation $y = px + \sqrt{a^2p^2 + b^2}$. 7 + 8
- 11. a) Define basis of a vector space.
 - b) Show that the vectors $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$ form a basis for \mathbb{R}^3 . Express (1, 0, 0) as a linear combination of α_1, α_2 and α_3 .

T(a, b, c) = (2b + c, a - 4b, 3a) with respect to the ordered basis B where

$$B = \{ (1, 1, 1), (1, 1, 0), (1, 0, 0) \}.$$
 $3 + 6 + 6$

12. a) Prove that the sequence $\{a_n\}$ is monotonically increasing and bounded when

 $a_n = (3n+1)/(n+2)$

- b) State D' Alembert's Ratio Test.
- c) If α , β , γ form a basis of a vector space *V*, then prove that $\alpha + \gamma$, $2\alpha + 3\beta + 4\gamma$ and $\alpha + 2\beta + 3\gamma$ also form a basis of the vector space *V*. 8 + 2 + 5