

CS/BCA/SEM-2/BM-201/2010 2010 MATHEMATICS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following : $10 \times 1=10$
i) The basis of a vector space contains
a) linearly independent set of vectors
b) linearly dependent set of vectors
c) scalars only
d) none of these.
ii) The solution of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$ is
a) $y=e^{x}$
b) $y=0$
c) $y=\sin x$
d) $y=\log _{e} x$.

CS / BCA/SEM-2 / BM-201/2010

a) $(3,-5)$
b) $(3,1)$
c) $(3,-5 / 3)$
d) $(3,-5 / 2)$.
iv) $\lim _{n \rightarrow \infty}(3 n+1) /(2 n-3)$ is
a) $\frac{1}{2}$
b) $\frac{3}{2}$
c) 1
d) $-\frac{1}{3}$.
v) The value of $\left(1 / D^{2}\right)\left(x^{3}\right)$ is
a) x^{5}
b) $\frac{1}{20}$
c) 20
d) $\frac{1}{20} x^{5}$.
vi) $\quad \sum 1 / n^{p}$ is divergent if
a) $p \leq 1$
b) $p>1$
c) $p<1$
d) $\quad p=1$.
vii) If $P=\{2,4,6,7,8,9\}, Q=\{1,2,6,9\}$, then $P-Q$ is
a) $\{4,7,8\}$
b) $\{4,6,8,9\}$
c) $\{1\}$
d) $\{2,4,6,7,8,9\}$.
viii) $\frac{1}{(D-2)(D-3)} e^{2 x}$ is

a) $-e^{2 x}$
b) $x e^{2 x}$
c) $-x e^{2 x}$
d) $-x e^{3 x}$.
ix) Integrating factor of $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=x$ is
a) e^{-x}
b) e^{x}
c) x^{2}
d) none of these.
x) The differential equation $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+a y^{\frac{1}{2}}=x$ is
a) linear of degree 2
b) non-linear of order one and degree 4
c) non-linear of order one and degree 2
d) none of these.
xi) If vectors ($a, 0,1$), ($0,1,0),(1, a, 1)$ of a vector space \mathbb{I}^{3} over \mathbb{R} be linearly dependent, then the value of a is
a) 2
b) 3
c) 1
d) none of these.

CS / BCA/SEM-2 / BM-201/2010
xii) Auxiliary equation of the $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=\sin x$ is
a) $y=\cos 2 x+\sin 2 x$
b) $\quad y=c_{1} \cos 2 x+c_{2} \sin 2 x$
c) $y=c_{1} \cos x+\sin 2 x$
d) none of these.
xiii) The general solution of $\log \frac{\mathrm{d} y}{\mathrm{~d} x}=x-y$ is
a) $e^{y}-e^{x}=c$
b) $e^{x}+e^{y}=c$
c) $e^{x+y}=c$
d) $e^{x-y}=c$.
xiv) If S and T be two subspaces of a vector space V, then which of the following is also a subspace of V ?
a) $\quad S \cup T$
b) $\quad S-T$
c) $\quad T-S$
d) $\quad S \cap T$.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. Show that the sequence $\left\{2+(-1)^{n} 1 / n\right\}$ is convergent.
3. Solve : $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x^{2}+e^{3 x}$
4. Find the value of x for which the vectors ($1,2,1), \notin x, 3,1$) and (2, $x, 0$) become linearly independent.
5. Find the value of the limit $\lim _{n \rightarrow \infty}\left(4 n^{3}+6 n-7\right) /\left(n^{3}-2 n^{2}+1\right)$.
6. Find a basis and the dimension of $S \cap T$, where S and T are subspaces of R^{3} defined by

$$
S=\left\{(x, y, z) \in R^{3}: 2 x+y+3 z=0\right\}
$$

and $T=\left\{(x, y, z) \in R^{3}: x+2 y+z=0\right\}$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) Show that $\left\{\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+n}}\right\}$ is convergent and converges to 1 .
b) Show that the sequence $\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots$ converges to 2 .
8. Solve the following equations :
a) $\left(D^{2}-2 D+1\right) y=x \sin x$
b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{1}{x} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{12 \log x}{x^{2}}$

CS/BCA/SEM-2/BM-201/2010
c) $3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 \frac{y}{x+1}=\frac{x^{3}}{y^{2}}$

9. a) Prove that a subset S of a vector space V over \mathbb{R} is a subspace if and only if $\alpha x+\beta y \in S$ for all $\alpha, \beta \in \mathbb{R}$ and $x, y \in S$.
b) Prove that the vectors $\{(1,2,2),(2,1,2),(2,2,1)\}$ are linearly independent in \mathbb{R}^{3}.
c) Find the basis and the dimension of the subspace W of \mathbb{R}^{3} where $W=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\} \quad 5+5+5$
10. a) Solve $(p x-y)(p y+x)=a^{2} p$, by using the substitution $x^{2}=u, y^{2}=v$; where $p=\frac{\mathrm{d} y}{\mathrm{~d} x}$.
b) Obtain the general solution and singular solution of the equation $y=p x+\sqrt{a^{2} p^{2}+b^{2}}$. $7+8$
11. a) Define basis of a vector space.
b) Show that the vectors $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1)$ and $\alpha_{3}=(0,-3,2)$ form a basis for \mathbb{R}^{3}. Express $(1,0,0)$ as a linear combination of α_{1}, α_{2} and α_{3}.
$\mathrm{CS} / \mathrm{BCA} / \mathrm{SEM}-2$ BND $20 \mathrm{BD} / 2010$
c) Find the matrix of the linear transformation T on
$V_{3}(\mathbb{R})$ defined as $T(a, b, c)=(2 b+c, a-4 b, 3 a)$ with respect to the ordered basis B where
$B=\{(1,1,1),(1,1,0),(1,0,0)\} .3+6+6$
12. a) Prove that the sequence $\left\{a_{n}\right\}$ is monotonically increasing and bounded when
$a_{n}=(3 n+1) /(n+2)$
b) State D' Alembert's Ratio Test.
c) If α, β, γ form a basis of a vector space V, then prove that $\alpha+\gamma, 2 \alpha+3 \beta+4 \gamma$ and $\alpha+2 \beta+3 \gamma$ also form a basis of the vector space V.

$$
8+2+5
$$

