Name :	
Roll No. :	A form of Consider Ind Conference
Invigilator's Signature :	

CS / BCA / SEM-2 / BM-201 / 2011

2011

MATHEMATICS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i)	The	degree and order o	of th	e differential equation
	<i>y</i> =	$\frac{x d^2 y}{dx^2} + r \sqrt{\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}} a$	re	
	a)	2,2	b)	2, 1
	c)	3, 2	d)	none of these.
ii)	The	geometric series $1+r+r$	r ² +	. is convergent if
	a)	-1 < r < 1	b)	<i>r</i> > 1
	c)	<i>r</i> = 1	d)	none of these.
iii)	The	series 1 + 1 + 1 + is		
	a)	convergent	b)	divergent
	c)	oscillatory	d)	none of these.
63				[Turn over

CS / BCA / SEM-2 / BM-201 / 2011

- iv) An absolutely convergent series is
 - a) necessarily convergent
 - b) not necessarily convergent
 - c) conditionally convergent
 - d) none of these.
- v) Leibnitz's test is applied to
 - a) a constant series
 - b) an alternating series
 - c) series of positive terms only
 - d) none of these.
- vi) If W_1 and W_2 be two subspaces of a vector space V(F) then $W_1 \cap W_2$ is
 - a) necessarily a subspace
 - b) not a subspace
 - c) is a subspace only when one is contained within another
 - d) none of these.
- vii) In the vector space R^3 over the field R the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) are
 - a) linearly independent
 - b) linearly dependent
 - c) none of these.

$$CS / BCA / SEM-2 / BM 2002 2011$$
viii) Integrating factor of differential equation $x \log x \frac{dy}{dx} + y = 2\log x$ is

a) $\log x$ b) $\log (\log x)$

c) e^x d) none of these.

ix) The upper bound of the sequence $\{(-3)^n\}$ is

a) 4 b) 0

c) -3 d) none of these.

x) If *T* is a linear mapping for *V* to *V* and $\alpha, \beta \in V$ and *a*, *b* are scalers, then

a) $T (\alpha \alpha + b\beta) = \alpha T (\alpha) + bT (\beta)$

b) $T (\alpha \alpha + b\beta) = \alpha T (\alpha) - bT (\beta)$

c) $T (\alpha \alpha + b\beta) = \alpha T (\alpha)$

d) $T (\alpha \alpha + b\beta) = bT (\beta)$

xi) The roots of the auxiliary equation of the given differential equation $\frac{d^2y}{dx^2} - \frac{4dy}{dx} + 4y = 0$ are

a) $2, 4$ b) $2, 2$

c) $1, 1$ d) none of these.

xii) Let $T : R^2 \to R^2$ be a linear transformation defined by $T(x,y) = (2x - y, x + y)$. Then kernel of *T* is

a) $\{(1, 2)\}$ b) $\{(0, 0)\}$

c) $\{(1, 2), (1, -1)\}$ d) none of these.

[Turn over

- b) rank (T) + nullity (T) = dim (W)
- c) rank (T) nullity (T) = dim (V)
- d) none of these.

Group – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{n!}{n!}$$

- 3. Show that the mapping defined by $T: \mathbb{R}^2 \to \mathbb{R}^3$ $T(x_1, x_2) = (x_1 + x_2, x_1 - x_2, x_2)$ is linear. Find the value of T(1, 2).
- 4. Solve :

$$x^{2}\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} - x\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = x^{2}\log x$$

5. The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x,y,z) = (x-y, x+2y, y+3z). Show that *T* is invertible and determine T^{-1} .

- Prove that the set of vectors { (1, -2, 3), (2, 3, 1), (-1, 3, 2) } is linearly independent. Also verify whether this set forms a basis of V₃ or not.
- 7. Let $S = \{ (x, y, z) : (x, y, z) \in \mathbb{R}^3, x + y + z = 0 \}$. Prove that S is a subspace. Find the dimension of S.

Group – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) Find the order and degree of the differential equation $d^{2}y \left((dy)^{2} \right)^{\frac{1}{4}}$

$$\frac{\mathrm{d} y}{\mathrm{d}x^2} = \left(y + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right)^2$$

b) Verify whether the differential equation $e^{y} dx + (xe^{y} + 2y) dy = 0$ is exact. If so, then solve it.

c) Solve the differential equation
$$x \frac{dy}{dx} - 2y = xy^4$$
.

3 + 5 + 7

9. a) Solve
$$y = px + \frac{a}{p}$$
 and also obtain the singular solution.

b) Solve
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} - 5y = \sin(\log x)$$
.

2153

[Turn over

5 + 6 + 4

10. a) State D' Alembert's ratio test. Test the convergence of

the series
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
.

b) Prove that the series

$$\left(1+\frac{1}{2}\right)-\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{8}\right)-\left(1+\frac{1}{16}\right)+\dots$$
 is an oscillating

series.

c) Verify for the following example that the converse of the statement "If $\sum a_n$ be a convergent series then

$$\lim_{n \to \infty} a_n = 0 \text{ "is not true, where } \sum a_n = \sum_{n=1}^{\infty} \frac{1}{n}.$$

5 + 6 + 4

- 11. a) Define basis of a vector space.
 - b) Show that the vectors $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$ form a basis for R^3 .
 - c) Determine the value of k so that the set $S = \{(1, 2, 1), (k, 3, 1), (2, k, 0)\}$ is linearly dependent in R^3 . 3 + 6 + 6

12. a) Let
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 be a linear transformation defined by
 $T(x,y,z) = (x-2y, y-2z, z-2x)$ for $(x,y,z) \in \mathbb{R}^3$.
Obtain a matrix representation for the linear
transformation T.

b) Let V = set of all 2×2 matrices and $T: V \to V$ be defined by T(X) = AX - XA where $X \in V$ and $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Find the basis of ker (*T*) and the nullity.

c) Let
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 be a linear mapping defined by
 $T(x, y, z) = (x + 2y, z)$. Verify that
dimension (kernel (T)) + dimension (Image (T))
 $= \dim (\mathbb{R}^3)$. $5 + 6 + 4$

- 13. a) Define a subspace of a vector space.
 - b) State a necessary and sufficient condition for $W \subseteq V$ to be a subspace of V(F).
 - c) Test whether the series

$$\frac{x}{1+x} - \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} - \frac{x^4}{1+x^4} + \dots (0 < x < 1)$$

is convergent or not.

3 + 3 + 9

7

[Turn over