

CS / BCA / SEM-2 / BM-201 / 2011 2011 MATHEMATICS

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The degree and order of the differential equation $y=\frac{x \mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+r \sqrt{\left\{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right\}}$ are
a) 2,2
b) 2,1
c) 3,2
d) none of these.
ii) The geometric series $1+r+r^{2}+\ldots$ is convergent if
a) $-1<r<1$
b) $r>1$
c) $r=1$
d) none of these.
iii) The series $1+1+1+\ldots$ is
a) convergent
b) divergent
c) oscillatory
d) none of these.

CS / BCA / SEM-2 / BM-201 / 2011

iv) An absolutely convergent series is
a) necessarily convergent

b) not necessarily convergent
c) conditionally convergent
d) none of these.
v) Leibnitz's test is applied to
a) a constant series
b) an alternating series
c) series of positive terms only
d) none of these.
vi) If W_{1} and W_{2} be two subspaces of a vector space $V(F)$ then $W_{1} \cap W_{2}$ is
a) necessarily a subspace
b) not a subspace
c) is a subspace only when one is contained within another
d) none of these.
vii) In the vector space R^{3} over the field R the vectors $(1,0,0),(0,1,0)$ and $(0,0,1)$ are
a) linearly independent
b) linearly dependent
c) none of these.

ix) The upper bound of the sequence $\left\{(-3)^{n}\right\}$ is
a) 4
b) 0
c) - 3
d) none of these.
x) If T is a linear mapping for V to V and $\alpha, \beta \in V$ and a, b are scalers, then
a) $\quad T(a \alpha+b \beta)=a T(\alpha)+b T(\beta)$
b) $\quad T(a \alpha+b \beta)=a T(\alpha)-b T(\beta)$
c) $\quad T(a \alpha+b \beta)=a T(\alpha)$
d) $\quad T(a \alpha+b \beta)=b T(\beta)$
xi) The roots of the auxiliary equation of the given differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{4 \mathrm{~d} y}{\mathrm{~d} x}+4 y=0$ are
a) 2, 4
b) 2,2
c) 1,1
d) none of these.
xii) Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation defined by $T(x, y)=(2 x-y, x+y)$. Then kernel of T is
a) $\{(1,2)\}$
b) $\{(0,0)\}$
c) $\{(1,2),(1,-1)\}$
d) none of these.
xiii) If $T: V_{2} \rightarrow V_{3}$ be defined by $T\left(v_{2}\right)=\{(x, 0,0): x$ is a real number $\}$ then rank of T is
a) 3
b) 2
c) 1
d) 0 .
xiv) If T is a linear transformation from vector space V into W, then
a) $\quad \operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V)$
b) $\quad \operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(W)$
c) $\quad \operatorname{rank}(T)-\operatorname{nullity}(T)=\operatorname{dim}(V)$
d) none of these.

Group - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
3. Show that the mapping defined by $T: R^{2} \rightarrow R^{3}$
$T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}, x_{2}\right)$ is linear. Find the value of $T(1,2)$.
4. Solve :

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=x^{2} \log x
$$

5. The linear transformation $T: R^{3} \rightarrow R^{3}$ is defined by $T(x, y, z)=(x-y, x+2 y, y+3 z)$. Show that T is invertible and determine T^{-1}.
6. Prove that the set of vectors $\{(1,-2,3),(2,3,1),(-1,3,2)\}$ is linearly independent. Also verify whether this set forms a basis of V_{3} or not.
7. Let $S=\left\{(x, y, z):(x, y, z) \in R^{3}, x+y+z=0\right\}$. Prove that S is a subspace. Find the dimension of S.

Group - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
8. a) Find the order and degree of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\left(y+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right)^{1 / 4}
$$

b) Verify whether the differential equation $e^{y} \mathrm{~d} x+\left(x e^{y}+2 y\right) \mathrm{d} y=0$ is exact. If so, then solve it.
c) Solve the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=x y^{4}$.

$$
3+5+7
$$

9. a) Solve $y=p x+\frac{a}{p}$ and also obtain the singular solution.
b) Solve $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y=\sin (\log x)$.
c) Test the convergence of the series $\sum_{n=1}^{\infty}(\sqrt{n+1} \sqrt{n})$.
10. a) State D' Alembert's ratio test. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}}$.
b) Prove that the series
$\left(1+\frac{1}{2}\right)-\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{8}\right)-\left(1+\frac{1}{16}\right)+\ldots$ is an oscillating series.
c) Verify for the following example that the converse of the statement "If $\sum a_{n}$ be a convergent series then
$\lim _{n \rightarrow \infty} a_{n}=0 "$ is not true, where $\sum a_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$.

$$
5+6+4
$$

11. a) Define basis of a vector space.
b) Show that the vectors $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1)$ and $\alpha_{3}=(0,-3,2)$ form a basis for R^{3}.
c) Determine the value of k so that the set $S=\{(1,2,1),(k, 3,1),(2, k, 0)\}$ is linearly dependent in R^{3}.

$$
3+6+6
$$

12. a) Let $T: R^{3} \rightarrow R^{2}$ be a linear transformation dêfined by $T(x, y, z)=(x-2 y, y-2 z, z-2 x)$ for $(x, y, z) \in R^{3}$. Obtain a matrix representation for the linear transformation T.
b) Let $V=$ set of all 2×2 matrices and $T: V \rightarrow V$ be defined by $T(X)=A X-X A$ where $X \in V$ and $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Find the basis of ker (T) and the nullity.
c) Let $T: R^{3} \rightarrow R^{2}$ be a linear mapping defined by $T(x, y, z)=(x+2 y, z)$. Verify that
dimension (kernel (T)) + dimension (Image (T))
$=\operatorname{dim}\left(R^{3}\right)$.
$5+6+4$
13. a) Define a subspace of a vector space.
b) State a necessary and sufficient condition for $W \subseteq V$ to be a subspace of $V(F)$.
c) Test whether the series
$\frac{x}{1+x}-\frac{x^{2}}{1+x^{2}}+\frac{x^{3}}{1+x^{3}}-\frac{x^{4}}{1+x^{4}}+\ldots(0<x<1)$
is convergent or not.

$$
3+3+9
$$

