CS/BCA/ODD/SEM-3/BCA-302/2017-18

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCA-302

DATA STRUCTURE WITH C

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Prefix notation is also known as
 - a) reverse polish notation
 - b) reverse notation
 - c) polish reverse notation
 - d) polish notation.

Turn over

CS/BCA/ODD/SEM-3/BCA-302/2017-18

- ii) The searching an element in a hash table of size m
 with n keys requires
 - a) O(n) comparisons
 - b) O(m/n) comparisons
 - c) O(m) comparisons
 - d) O(n/m) comparisons.
- iii) The complexity of linear search algorithm is
 - a) O(n)

b) $O(\log n)$

- c) $O(n^2)$
- d) $O(n \log n)$.
- iv) The best data structure to see whether an arithmetic expression has balanced parenthesis is a
 - .a) stack

b) queue

c) tree

- d) list.
- v) The sparse matrix is a matrix whose
 - a) most of the elements are non-zero
 - b) most of the elements are zero and half of the elements are non-zero
 - c) half of the elements are zero
 - d) none of these.

- vi) The postfix notation is also known as
 - a) polish notation
 - , b) reverse polish notation
 - c) reverse notation
 - d) none of these.
- vii) For any non-empty binary tree T, if n is the number of nodes and e is the number of edges, then the relation between e and n is

(a)
$$e = n - 1$$

b)
$$e = n + 1$$

c)
$$e + 1 = n$$

d)
$$e = n$$
.

- viii) When determining the efficiency of algorithm the time factor is measured by
 - a) counting microseconds
 - .b) counting the number of key operations
 - c) counting the number of statements
 - d) counting the kilobytes of algorithm.

CS/BCA/ODD/SEM-3/BCA-302/2017-18

- ix) A data structure where elements can be added or removed at either end but not in the middle is
 - .a) linked list
- b) stack

c) queue

- d) deque.
- x) Complexity expressed in O-notation is
 - a) lower bound
 - ,b) upper bound
 - c) middle between (a) and (b)
 - d) none of these.
- xi) When the malloc() function returns NULL value it means
 - , a) memory is not allocated
 - b) memory is allocated but no data entered
 - c) both (a) and (b)
 - d) none of these.

GROUP - B (Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

2. Write a C function to implement 'PUSH' and 'POP' operations in a stack.

2½ + 2½

3. Convert the following infix expression into postfix form by using stack:

$$a + b * c - (d - e * f) / q$$

- 4. What are the advantages of linked list over array? What are the disadvantages over array? $2\frac{1}{2} + 2\frac{1}{2}$
- 5. What is B-tree? What is the difference between a B-tree and a B+tree? 3+2
- 6/ What is dequeue? What is the advantage of dequeue over ordinary queue? 3 + 2

GROUP - C (Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) What are the differences between general tree and a binary tree?
 - b) Prove that the height h of a binary tree T is $h = \log_2(n+1)$.
 - Construct a B-tree of order 5 form the following key values:

 5

 5

 6, g, f, b, k, d, h, m, j, é, s, i, r, x, c, l, n, t, u, p
 - What is hashing? How is collision problem solved in hashing?

[Turn over

CS/BCA/ODD/SEM-3/BCA-302/2017-18

- 8. a) Explain with an example the heap sort algorithm.
 - b) Write an algorithm for this heap sort.
 - c) Find the time complexity of the above algorithm.

$$5 + 5 + 5$$

- 9. Write the functions for the following:
 - a) Insert a node after a particular node in singly linked list.
 - b) Reverse display of the list in doubly linked list.
 - c) Physically reverse the singly linked list. 5 + 5 + 5
- 10. a) What is an adjacency matrix representation of a graph?
 - b) Prove that maximum number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$.
 - c) What is the difference between recursion and iteration?
 - d) What will be the complexity for the following operations—quick sort, binary search, selection sort?
 5+3+2+5

CS/BCA/ODD/SEM-3/BCA-302/2017-18

- 11. Write short notes on any three of the following: 3×5
 - AVL tree
 - b) Threaded binary tree
 - c) Search algorithm of BST
 - d) Priority queue
 - e) ADT.