BM-301

MATHEMATICS FOR COMPUTING

Time Allotted: 3 Hours

Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP A(Multiple Choice Type Questions)

1. Answer any *ten* questions.

 $10 \times 1 = 10$

(i) Maximum number of edges with n vertices in a completely connected graph is

(A)
$$(n-1)$$

(B)
$$\frac{(h-1)}{2}$$

(C)
$$\frac{n}{2}$$

(D)
$$\frac{n(n-1)}{2}$$

(ii) Prim's algorithm is used to find the minimal spanning tree of a

(A) dense graph

(B) sparse graph

(C) null graph

(D) normal graph

(iii) A Simple graph has

(A) no self loops

(B) no parallel edges

(C) both (A) and (B)

(D) none of these

(iv) The generating function of $\{1, 1, 1,\}$ is

$$(A) \frac{1}{(1-x)}$$

(B)
$$\frac{1}{(1+x)}$$

$$(C) \frac{1}{(1-x)(1+x)}$$

(D) none of these

[Turn over]

CS/BCA/Odd/Sem-3rd/BM-301/2014-15

(v)	A Grammar is said to be regular if it is of		
	(A) type 0	(B) type 1	
	(C) type 2	(D) type 4	
(vi)	The mathematical model of Mealy machine is a		
	(A) 5 tuple	(B) 4 tuple	
	(C) 6 tuple	(D) none of these	
(vii)	If $n! = x(n-2)!$ Then $x =$		
	(A) n	(B) $n-1$	
	(C) $n(n-2)$	(D) $n(n-1)$	
(viii)	Number of four digit numbers formed by digits 3, 1, 3, 1 is		
	(A) 5	(B) 10	
	(C) 20	(D) 6	
(ix)	The proposition $P \wedge (Q \wedge -Q)$ is a		
	(A) contradiction	(B) tautology	
	(C) both (A) and (B)	(D) none of these	
(x)	Number of elements contained in an incidence matrix of a digraph is		
	(A) 1	(B) 2	
	(C) 3	(D) none of these	
(xi)	A pseudo graph		
•	(A) Must have loops	(B) Does not have loop	
	(C) Must have parallel edges	(D) None of these	
(xii)	Choose the correct statement:		
	(A) path is an open walk		
	(B) every walk is a trail		
	(C) every trail is a path		
	(D) a vertex cannot appear twice in a walk		

2

·

3221

CS/BCA/Odd/Sem-3rd/BM-301/2014-15

GROUP B (Short Answer Type Questions)

Answer any three questions.

 $3 \times 5 = 15$

- 2. In an examination a minimum is to be secured in each of the 5 subjects for a pass. In how many ways can a student fail?
- 3. Find the sequence from the generating function $\frac{(3+7x)}{(1-x)(1+4x)}$
- 4. Prove that $((P \land \neg Q) \rightarrow R) \rightarrow (P \rightarrow (Q \lor R))$ is a tautology.
- 5. Write a short note on Moore machine.
- 6. Show that a tree with n vertices has (n-1) edges.

GROUP C (Long Answer Type Questions)

	Answer any three questions.	$3 \times 15 = 45$
7. (a)	Solve the following recurrence relation by generating function method:	5
	$a^{n} - 2a_{n-1} + a_{n-2} = 2^{n-2}$ for $n \ge 2$ and $a_0 = 1$, $a_1 = 5$	
(b)	What is a Deterministic Finite Automata (DFA)? Explain with suitable example.	5
(c)	Write CNF and DNF of the following statement: $p \lor \{\neg p \to (q \lor (q \to \neg r))\}$	5
8.(a)	Find the grammar of the set of the terminals $\{a, b\}$ that generates the language $L = \{a, ab, ab^2, ab^3, \ldots\}$.	6
(b)	Let Z be a set of all integers and a binary relation ρ is defined on Z by the rule, $m\rho n$ means $m-n$ is divisible by 5 such that ρ is an equivalence relation on Z and identify the equivalent classes.	6
(c)	Show that $ 2n = 2n\{1, 3, 5 \cdots (2n-1)\} \underline{n} $	3

[Turn over]

CS/BCA/Odd/Sem-3rd/BM-301/2014-15

- 9.(a) Find out the characteristic roots of the recurrence relation $a_n + 4a_{n-1} + 3a_{n-2} = 0$ and hence solve it.
- 6
- (b) Show that a simple graph with n vertices and k components has at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- 6

(c) Prove the following equivalence: $\neg p \land q \Leftrightarrow \neg (p \lor (\neg p \land q))$

3

10.(a) Find whether the following two graphs are isomorphic or not:

5

- G_2
- (b) How many integral solutions are there of $x_1 + x_2 + x_3 + x_4 + x_5 = 30$ where $x_1 \ge 2$, $x_2 \ge 3$, $x_3 \ge 4$, $x_4 \ge 2$, $x_5 \ge 0$

(c) Determine the value of *n* if $4 \times {}^{n}P_{3} = {}^{n+1}P_{3}$.

- 11.(a) Using Kruskal's algorithm find the minimal spanning tree from the following graph from S to Z.

(b) Write short note on Hamiltonian Graph.

(c) Using the principle of mathematical induction prove that

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$