

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BM-301

MATHEMATICS FOR COMPUTING

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Solution of the recurrence relation $a_n = 2a_{n-1}$ with

$$a_0 = 1$$
 is

a)
$$2^n$$

b)
$$2^{n-1}$$

c)
$$2^{n+1}$$

d)
$$2^{n-2}$$

3/30207

[Turn over

11)	If	the	truth	value	of	p	and	\boldsymbol{q}	are	F	and
	T respectively then the truth value of $p \leftrightarrow q$ is										

a) T

- b) F
- c) both T and F
- d) none of these.

a) Type-0

b) Type-1

- c) Type-2
- d) Type-3.

iv)
$$p \lor (p \land q) =$$

a) p

b)

c) $p \wedge q$

d) $p \vee q$.

a) 72

b) 144

c) 360

d) none of these.

vi) The generating function for the sequence
$$\frac{1}{3}$$
, $-\frac{1}{3}$, $\frac{1}{3}$, $-\frac{1}{3}$ is

- a) $\frac{1/3}{(1+x)}$
- b) $\frac{1}{3(1-x)}$

c)
$$\frac{1}{\frac{1}{3}(1-x)}$$

$$\mathbf{d}) \quad \frac{-3}{(1-x)}.$$

vii)	What is the minimum	no.	of	vertices	necessary	for
		-		1	•	
	a graph with 6 edges?			.**	•	

a) 6

b) 5

c) 7

d) none of these.

viii) A simple graph has

- a) no parallel edges
- b) no loops
- c) both (a) and (b)
- d) no isolated vertex.
- ix) The difference between Mealy and Moore Machine lies on
 - a) state transition
- b) output function
- c) input function
- d) none of these.
- x) Maximum number of edge with *n* vertices in a completely connected graph is
 - a) (n-1)
- b) n/2
- c) (n-1)/2
- d) n(n-1)/2.

3/30207

3

[Turn over

- xi) If a binary tree has 20 pendant vertices, then the number of internal vertices of the tree is
 - a) 20

b) 21

c) 23

d) 19.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) How may words can be made using all the letters in the word MONDAY?
 - b) In how many ways can the letters of the word

 ALGEBRA be arranged, such that two As are never
 together.

 2 + 3
- 3. Find the sequence for following generating function: $3x(1-x)^5.$
- 4. Construct Incidence matrix from the following graph:

- 5. Write short notes on Moore Machine.
- 6. What is Deterministic finite automata (DFA)? Explain with suitable example.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) Examine Graphs H and G are isomorphic or not:

b) Prove that

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)}$$
 by using mathematical induction.

A graph has 21 edges, 3 vertices each of degree 4
 and rest of the vertices are of degree 3. Find out the total number of vertices.

3/30207

5

[Turn over

8. a) Using Kruskal's algorithm find minimal spanning tree of the following graph:

- b) Prove that a simple graph with n vertices and k components has at most $\frac{(n-k)(n-k+1)}{2}$ edges. 8
- 9. a) Solve the recurrence relation $a_{n+2} 4a_{n+1} + 4a_n = 0$, $(n \ge 0)$ with $a_0 = 2$ and $a_1 = 1$ using generating function.
 - b) Convert the given Moore Machine to its equivalent Mealy Machine.

Present state	Next	Output		
	Input α = 0	input a = 1		
-> q ₀	q_3	$q_{ m l}$	0	
q_1	q_1	q_2	. 1	
$q^{}_2$	$q^{}_2$	q_3	0	
q_3	q_3	q_0	0	

10. a) Construct truth table and determine whether the following proposition is tautology or contradiction.

$$\{ (p \land \sim q) \rightarrow r \} \rightarrow \{ p \rightarrow (q \lor r) \}.$$

b) Find all spanning trees from the following graph G:

11. a) Draw the graph whose incidence matrix is given below:

$$\begin{bmatrix} 0 & 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ \end{bmatrix}$$

b) By Prim's Algorithm find a minimal spanning tree and the corresponding weight of the spanning tree in the following graph:

