

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCA-301

OPERATING SYSTEMS

Time Allotted: 3 Hours

1.

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type	Questions)	
Choose the correct alternatives for each of the followin	ıg:	1×10=10
(i) Locality of references justifies the use of		
(a) Interrupts	(b) Polling	
(c) DMA	(d) Cache memory	
(ii) Which scheduling policy is most suitable for tim	ne shared operating system?	
(a) SJF	(b) RR	
(c) FCFS	(d) Elevator	
(iii) Thrashing		
(a) reduces page I/O.	(b) decreases the degree of multi prog	gramming
(c) implies excessive page I/O.	(d) improve system performance.	
(iv) Increase of RAM in a computer typically improve	ves performance because	
(a) virtual memory increases.	(b) larger RAMs are faster.	
(c) fewer page faults occur.	(d) fewer segmentation fault.	
(v) Dirty bit indicates		
(a) helps avoid unnecessary write on a paging d	levice.	
(b) helps maintain LRU information.		

QADE

(c) allows only read on a page.

(d) None of the above

Turn Ove

CS/BCA/Odd/ SEM-3/BCA-301/2018-19

	(vi)	A set of resources allocations such	that the system car	allocate resources to each proces	s in some
	(**)	order and still avoid a deadlock is c	alled	•	
		(a) Unsafe State	(b)	Safe State	
		(c) Starvation	(d)	Greedy Allocation	
	(vii)	The main function of the dispatched	is		
		(a) Swapping a process to the disk			
		(b) Assigning ready process to the	CPU.		
		(c) Suspending some of the proces	ses when the CPU le	oad is high.	
		(d) Bring processes from the disk t	o the main memory.		
	(viii)	The total time to prepare a disk driv	ve mechanism for a	block of data to be read from it is	
	•	(a) Seek time	(b)	Latency time	
		(c) Seek time and Latency time	(d)	Transmission time	
	(ix)	Which of the following disk schedu	ling strategies is lik	ely to give the best throughput?	
		(a) Farthest cylinder next	(b)	Nearest cylinder next	
		(c) First come first serve	(d)	Elevator algorithm	
	(x)	Context switching is			
		(a) part of spooling	(b)	part of polling	
		(c) part of interrupt handling	(d)	part of interrupt servicing	
-			Group – B		
		(Short An	swer Type Questic	ons)	
			y three of the follow		5×3=15
2.	Define	Thread and compare fork() and clo	ne(),		
2					2+3=5
3.		s Belady's Anomaly? Explain with a	-		
4.	Compa	re CSCAN and CLOOK disk arm so	cheduling algorithm	ns with examples.	
5.	Explain	with examples the difference between	en preemptive and	non-preemptive priority schedul	
6.	Disting	trich hattur	Freeinbuve and	non-preemptive priority schedul	ing.
· •	minik	uish between starvation and deadloc	k		

Group - C

(Long Answer Type Questions)

Answer any three of the following.

 $15 \times 3 = 45$

- 7. (a) Discuss different data structure implementations of Page Table.
 - (b) Discuss paging with segmentation scheme of memory management.
 - (c) Discuss Bounded Buffer Producer Consumer problem with pseudo code.

6+3+6=15

- 8. (a) Explain Peterson's 3rd algorithms with pseudo code. Discuss the merits and demerits of this algorithm.
 - (b) Discuss writer biased "Readers-Writers" problem with pseudo code with the help of semaphores.
 - (c) The address sequence generated by tracing a particular program executing in a pure demand paging system with 100 bytes per page is

 $0100,\,0200,\,0430,\,0499,\,0510,\,0530,\,0560,\,0120,\,0220,\,0240,\,0260,\,0320,\,0410.$

Suppose that the memory can store only one page at a time and if X is the address which causes a page fault then from addresses X to X+99 are loaded on to the memory. How many page faults will occur? 6+3+6=15

- 9. (a) Differentiate between internal and external fragmentation. Compare Best fit and Worst fit searching strategy.
 - (b) Explain manual recovery mechanism of deadlock in details.
 - (c) What is demand paging?

6+6+3=15

10. (a) Consider the following snapshot of a system:

	Allocation		Max			Available						
	A	В	C	D	Α	В	C	D	Α	В	_ C	D
PO	0	0	1_	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6				
P3	0	6	3	2	0	6	. 5	2				
P4	0	0	1	4	0	6	5	6			· .	

Examine the system is in safe state or not.

- (b) What is memory compaction? What is its use?
- (c) Explain PCB with a neat diagram.

5+(3+3)+4=15

CS/BCA/Odd/ SEM-3/BCA-301/2018-19

'11. (a) Calculate and compare the average cylinder movements for the SSTF algorithm:

27, 129, 110, 186, 147, 41, 10, 64, 120 (Suppose the disk drive has 200 cylinders numbered 0 to 199. The drive is currently serving a request at cylinder 143.)

(b) Consider the following set of process; calculate the average waiting time for the preemptive SRTF scheduling algorithm. Show the Gnatt chart also.

Process	Arrival time	Process time			
A	0	3			
В	1	5			
С	3	2			
D	9	5			
Е	12	5			

- (c) Explain the following file access methods with example:
 - (i) Direct
 - (ii) Sequential
 - (iii) Indexed sequential

4+5+6=15