Name:				
Roll No.:				
Invigilator's Signature:				
CS / BCA / SEM	M-3 / BM (BCA)-301 / 2010-11			
2010	-11			
MATHEMATICS FO	OR COMPUTING			
Time Allotted: 3 Hours	Full Marks: 70			
The figures in the margi	n indicate full marks.			
Candidates are required to give the	eir answers in their own words			
as far as	practicable.			
GROUP				
(Multiple Choice Type Questions)				
1. Choose the correct alternative	es for any one of the following:			
	$10\times 1=10$			
i) Maximum number of	edges with n vertices in a			
completely connected graph is				
a) $(n-1)$	b) $\frac{n}{2}$			
(n-1)	n(n-1)			
c) $\frac{(n-1)}{2}$	d) $\frac{n(n-1)}{2}$.			
3017	[Turn over]			

- ii) A square matrix is said to be symmetric iff
 - a) A = -(A)
- b) $A^T = A$

- c) $A^T = -A$
- d) A = A
- iii) If R_1 and R_2 are two Regular expressions (R.E.) then $R_1 + R_2$ is
 - a) R.E.

b) CFG

c) CSG

- d) Regular Grammar.
- iv) Prim's Algorithm is used to find the minimal spanning tree of a
 - a) Dense graph
- b) Sparse graph
- c) Null graph
- d) Normal graph.
- v) A simple graph has
 - a) no self loop
- b) no parallel edges
- c) both (a) and (b)
- d) none of these.

- vi) The generating function of $\{1, 1, 1, 1, \dots \}$ is
 - a) $\frac{1}{1-x}$

- b) $\frac{1}{1+x}$
- c) $\frac{1}{(1+x)(1-x)}$
- d) none of these.
- vii) A grammar is said to be regular if it is of
 - a) Type-0

b) Type-I

c) Type-2

- d) Type-3.
- viii) How many bit strings of length 10 contain exactly four 1's?
 - a) 120

b) 720

c) 386

- d) 210.
- ix) Solution of the recurrence relation $a_n = 2a_{n-1} + 1$ with $a_0 = 0$ is
 - a) $1-2^n$

b) $2^n - 2$

c) $2^{n-1}-1$

d) $2^{n}-1$.

3017

3

[Turn over]

CS / BCA / SEM-3 / BM (BCA)-301 / 2010-11

Aj	Mannoci of tour-digit	mumber formed t	by the digits
	3, 1, 3, 1 is		
	`a) 5	b) 10	
	c) 20	d) 6.	
xi)	xi) How many permutations of the letters 'A B C D E F G contain the string 'B C D'?		
	a) 24	b) [6	
	c) 120	d) 0.	
xii)	If a binary tree has number of internal ver		es, then the
	a) 20	b) 21	
	c) 23	d) 19.	
	GRO	UP - B	
(Short Answer Type Questions)			
	Answer any thre	e of the following.	$3 \times 5 = 15$
Let	$A = \{1, 2, 3, 4\}$ and $R = \{1, 2, 3, 4\}$	= { (1, 1), (2, 2), (3, 3)	, (4, 4), (1, 2),
(1, 3	3), (3, 2) }. Is <i>R</i> is equival	ence relation ? Expla	in.
Prov	we that $((P \land \rightarrow Q) \rightarrow R) \rightarrow$	$(P \to (Q \lor R))$ is a tar	utology.

2.

3.

CS / BCA / SEM-3 / BM (BCA)-301 / 2010-11

- 4. Find out the characteristic roots for $a_n + 4a_{n-1} + 3a_{n-2} = 0$ and hence solve it.
- 5. Prove that for a graph G = (V, E), there can be even number of odd vertices.
- 6. Show that there exists no simple graph with five vertices having degrees 4, 4, 4, 2, 2.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

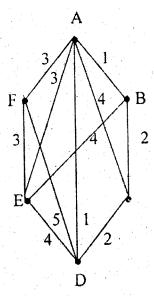
- 7. a) Solve the following recurrence relation using generating function $a_n 2a_{n-1} + a_{n-2} = 2^{n-2}$ for $n \ge 2$ & $a_0 = 1, a_1 = 5$.
 - b) Show that a simple graph with n vertices and k components has at most $\frac{(n-k)(n-k+1)}{2}$ edges. 7+8
- 8. a) Find the Grammar on the set of terminals $\{a, b\}$ that generates the language $L = \{a, ab, ab^2, ab^3, ...\}$.
 - b) Draw the transition diagram for the FSA with $I=\{\ a,\ b\ \},\ Q=\{\ q_0,q_1,q_2\ \},\ F=\{\ q_0,q_1\ \} \ \text{and} \ \delta \ \text{is given}$ by

δ	a	b
q_0	q_0	q_1
q_1	q_0	q_2
q_2 .	q_2	q_2

7 + 8

3017

5


[Turn over]

CS / BCA / SEM-3 / BM (BCA) -301 / 2010-11

9. a) Find the CNF of the following statement:

$$\neg (p \lor q) \leftrightarrow (p \land q)$$

- b) There are 50 students in each of the senior or junior classes. Each class has 25 male and 25 female students. In how many ways can an eight-student committee be formed so that there are four females and three seniors in the committee?
- a) Find by Kruskal's Algorithm a minimal spanning tree from the following graph G.

CS / BCA / SEM-3 / BM (BCA) -301 / 2010-11

b) Draw the graph having the following matrices as their adjacency matrices.

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}$$

8 + 7

- 11. a) How many selections any number at a time, may be made from 3 white balls, 4 green balls, 1 red ball and 1 black ball, if at least one must be chosen?
 - b) How many integral solutions are there of $x_1+x_2+x_3+x_4+x_5=30$ where $x_1\geq 2, x_2\geq 3, x_3\geq 4, x\geq 2, x_5\geq 0$.
 - c) Solve the following recurrence relation:

$$a_r - 6a_{r-1} + 8a_{r-2} = r.4^r$$
 where $a_0 = 8$ and $a_1 = 22$.

d) Find the characteristic roots of the following recurrence relation:

$$a_n - 3a_{n-1} - 4a_{n-2} = 0.$$

3 + 4 + 5 + 3