CS/BCA/SEM-3/BCA-301/2011-12 2011

OPERATING SYSTEM

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1.	Ch	oose	the correct alternati	ives for th	ne following:				
					$10 \times 1 = 10$				
	i)	The	e technique of tograms from the men	emporar mory of a	ily removing inactive computer system is				
		a)	switching	b)	swapping				
		c)	paging [†]	d)	none of these.				
	ii)	The time required for read-write head to travel to target cylinder is called							
		a)	latency time	b)	seek time				
٠		c)	transfer time	d)	none of these.				
	iii)	The technique of relocating all occupied areas of storage to one end is called							
		a)	sharing	b)	relocation				
		c)	compaction	d)	distribution.				

	v= +4 .	1 full-following states	ment	e is false?					
iv)	Which of the following statements is false?								
	a)	Implicit task is a system-defined task							
	b)	A process is an instance of a program execution							
	c)								
	d)		m f	ollows Round-robin					
		algorithm.							
v)			page	traffic and low CPU					
	utilization is a) Belady's Anomaly b) Mutual Exclusion								
	a)	Belady's Anomaly							
	c)	Deadlock	d)						
vi)	Which scheduling algorithm is inherently preemptive?								
	a)	FCFS	b)	SJF					
	c)	RR	d)	Priority scheduling.					
vii)	The optimal scheduling algorithm is								
	a)	FCFS	b)	SJF					
	c)	RR	d)	None of these.					
viii)	Thr	Thrashing							
	a)	reduces page I/O							
	b)	decreases the degree of multiprogramming							
	c)	impliés excessive page I/O							
	d)	improves the system performance.							
ix)	For	k is							
	a)	the creation of a new job							
	b)								
	c)	increasing the priority of a task							
	d)	the creation of new task.							
x)	RM	II stands for							
	a)	Remote Method Interface							
	b)	Remote Message Inte	rface						
	c)	Remote Method Invoc	ation	ı					
	d)	None of these.							

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

Consider the following resource allocation state involving 2. processes P0, P1, P2, P3 and P4 and resources R0, K1, R2, R3 and R4:

Resour	ces A		Resources Still Needed						
Processes	Resources				Processes	Resources			
	R1	R2	R3	R4		R1	R2	R3	R4 [']
А	3	0	1	1	А	1	1	O	O
В	0	1	0	0	В	0	1	1	2
С	1	1	1	0	С	3	1	0	0
D	1	1	0	1	D	0	0	1	0
E	0	0	0	0	E	2	1	1	0

Available resources = $1 \ 0 \ 2 \ 0$

Determine whether the system is in a safe state or not.

- Explain with examples the difference between premptive and 3. non-preemptive priority scheduling.
- Distinguish between 'starvation' and 'deadlock'. 4.
- Explain PCB with a fleat diagram. 5.
- What is thread? Compare it with process. 6.

2 + 3

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

Explain the following file access methods: 7.

 3×3

- Direct
- 11) Sequential
- Indexed Sequential. <u>iii)</u>
- What is Memory Compaction? What is its use? 3 + 3b)

- 8. a) What is swapping? What is its purpose?
 - b) Consider the following sequence of memory references generated by a single program in a pure paging system:

10, 11, 104, 170, 173, 177, 309, 245, 246, 247, 458, 364.

Determine the number of page faults for each of the following page replacement policies assuming three (3) page frames are available and all are initially empty.

The size of a page is 100 words:

- i) LRU
- ii) FIFO
- iii) Optimal page replacement. 3 + 4 + 4 + 4
- a) Describe a system model for deadlock.
 - b) Explain the combined approach to deadlock handling.
 - c) Differentiate process switching and context switching.

5 + 5 + 5

- 10. a) Explain Mutual exclusion.
 - b) Write the first algorithm of mutual exclusion algorithm.
 - c) What are its problems?

5 + 7 + 3

11. Write short notes on any three of the following:

 3×5

- a) Round Robin Scheduling
- b) Thrashing
- c) Virtual memory
- d) Paging and Segmentation.