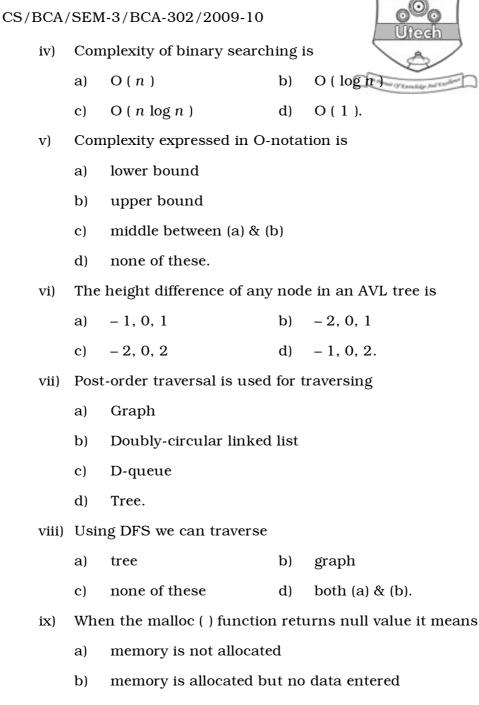
Name :	
Roll No. :	A dama (V Kanalala Jad Kaland
Invigilator's Signature :	

CS/BCA/SEM-3/BCA-302/2009-10 2009 DATA STRUCTURE WITH C

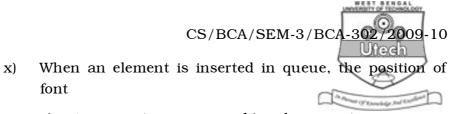
Time Allotted : 3 Hours

Full Marks : 70


The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - i) The sparse matrix is a matrix whose
 - a) most of the elements are non-zero
 - b) most of the elements are zero
 - c) half of the elements are zero and half are non-zero
 - d) none of these.
 - ii) How many leaf nodes are there in a complete binary tree of highest level '*n*' ?
 - a) 2^n b) 2^{n-1}
 - c) $2^n 1$ d) none of these.
 - iii) The prefix notation is also known as
 - a) Polish notation b) reverse Polish notation
 - c) reverse notation d) none of these.


33525

[Turn over

- c) both (a) & (b)
- d) none of these.

33525

- a) increments b) decrements
- c) unchanged d) none of these.

GROUP – B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. What are B tree and B+ tree ? Give the difference between them.
- 3. Convert the following into postfix :

 $a + b \times c \$ d - (e - f \times g) / h.$

- 4. Write an algorithm to add two polynomials.
- 5. What is hashing ? Briefly explain different commonly used hash functions.
- 6. Write a short note on AVL tree.

$\label{eq:GROUP-C} \begin{array}{ll} \textbf{GROUP-C} \\ \textbf{(Long Answer Type Questions)} \\ \text{Answer any three of the following.} & 3\times15=45 \end{array}$

- 7. Write short notes on any *three* of the following : 3×5
 - a) ADT
 - b) DEQUE
 - c) Threaded binary tree
 - d) Circular queue.

33525

3

[Turn over

CS/BCA/SEM-3/BCA-302/2009-10		
8.	a)	Write a function to delete any node from a binary search tree.
	b)	Give the advantages of using linked list over array. 5
9.	a)	Explain with an example the heap sort algorithm. 5
	b)	Write an algorithm for this heap sort. 5
	c)	Find the time complexity of the above algorithm. 5
10.	Wri	te the functions for the following : 3×5
	a)	Insert a node after a particular node in single linked list.
	b)	Reverse display of the list in doubly linked list.
	c)	Physically reverse the single linked list.
11.	a)	What is an adjacency matrix representation of agraph ?5
	b)	Prove that maximum number of nodes on level <i>i</i> of a binary tree is $2^{i-1}, i \ge 1$.
	c)	What is the difference between recursion and iteration ?
		2
	d)	What will be the complexity for the following operations ?
		Quick sort, Binary search, selection sort.5