	Utech
Name :	
Roll No. :	In the State of th
Invigilator's Signature :	

CS/BCA/SEM-3/BCA-302/2011-12

2011

DATA STRUCTURE WITH C

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

i) Let q be the queue of integers defined as follows:

```
#define MAX10
struct queue
{ int data [MAX];
    int rear, front;
} q;
```

To insert an element into the queue, we may write operation

- a) ++q.data[q.rear]=x;
- b) q.data[q.rear]++=x;
- c) q.data[++q.rear]=x;
- d) none of these.
- ii) The tree traversal technique in which the root is traversed after its children is known as
 - a) post-order traversal
- b) pre-order traversal
- c) in-order traversal
- d) none of these.

3131 [Turn over

CS/BCA/SEM-3/BCA-302/2011-12

111)	Number of possible binary tree with 4 node is					
	a)	14	b)	34 Annually Exercising and Exercised		
	c)	24	d)	none of these.		
iv)	Number of nodes in a complete binary tree of depth k is					
	a)	2k	b)	2^k		
	c)	$2^k - 1$	d)	none of these.		
v)	The best case complexity of insertion sort is					
	a)	$O(n^2)$	b)	$O(\log n)$		
	c)	O(n)	d)	$O(n \log n)$.		
vi)	Graj	ph is a				
	a)	linear data structure				
	b)	non-linear data structi	are			
	c)	either (a) or (b) depend	ing o	n situation		
	d)	none of these.				
vii)	Stack works on					
	a)	LIFO	b)	FIFO		
	c)	both (a) and (b)	d)	none of these.		
viii)	A lin	aked list follows				
	a) random access mechanism					
	b) sequential access mechanism					
	c)	no access mechanism				
	d)	none of these.				
ix)	The best data structure to see whether an arithmetic expression has balanced parenthesis is a					
	a)	stack	b)	queue		
	c)	tree	d)	list.		
x)	The total number of comparisons in bubble sort is					
	a)	$O(n \log 2^n)$	b)	O(2n)		
	c)	$O(n^2)$	d)	$O(2^n)$.		
3131		2				

- xi) The sparse matrix is a matrix whose
 - a) most of the elements are non-zero
 - b) half of the elements are zero and half of the elements are non-zero
 - c) most of the elements are zero
 - d) none of these.
- xii) The prefix notation is also known as
 - a) reverse notation
- b) reverse polish notation
- c) polish notation
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

- 2. What is Data structure? What is ADT? Explain with an example.
- 3. What is circular queue ? How is it different from queue ? What advantage do we get from circular queue over ordinary queue ?
- 4. Convert the following infix expression into postfix form by using stack:

$$a + b * c - (d - e * f) / g$$

- 5. What is Linked List? What are its advantages over array? What are its disadvantages over array? 1 + 2 + 2
- 6. Distinguish between DFS and BFS. Indicate their time complexities. 4 + 1

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. a) What is binary search tree?

- 2
- b) Construct the binary search tree if the elements are in the order:

4

CS/BCA/SEM-3/BCA-302/2011-12

				-		
	c)	Dele	ete the following nodes in order and show each st	ep:		
		i)	Node with 55	E		
		ii)	Node with 66			
		iii)	Node with 50. 3 + 3	+ 3		
8.	Writ	te sh	ort notes on any three of the following:	8 × 5		
	a)	De-queue				
	b)	Non-linear data structure				
	c)	Hashing				
	d)	Priority queue.				
9.	a)	Define General tree. Write an algorithm to convert a General tree into a binary tree.				
	b)	Define B -tree. Construct a B -tree of order 5 from the following key values :				
		a, g	ı, f, b, k, d, h, m, j, e, s, i, r, x, c, l, n, t, u, p.			
		Also	o delete h, r, p, d.	8		
10.	Writ	Write the functions of the following:				
	a)	Inse List	ert a node after a particular node in a Single Lin	ked 5		
	b)	Rev List	erse display of the list elements in a Doubly Lin	iked 5		
	c)	Phy	sically reverse the Single Linked List.	5		
11.	a)	Wri	te a C function for selection sort.	6		
	b)		v does binary search give benefit over sequer rch?	ntial 3		
	c)	Exp	plain the divide and conquer rule with example.	6		
			========			

3131 4