| Name :                    |                                     |
|---------------------------|-------------------------------------|
| Roll No. :                | Conference (V Soundary Ind Exclored |
| Invigilator's Signature : |                                     |

# CS / BCA / SEM-3 / BM (BCA)-301 / 2010-11

## 2010-11

## **MATHEMATICS FOR COMPUTING**

*Time Allotted* : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

## GROUP – A

## (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *one* of the following :

 $10 \times 1 = 10$ 

i) Maximum number of edges with *n* vertices in a completely connected graph is

a) 
$$(n-1)$$
 b)  $\frac{n}{2}$ 

c) 
$$\frac{(n-1)}{2}$$
 d)  $\frac{n(n-1)}{2}$ .

3017

[Turn over]



- c)  $A^T = -A$  d) A = A.
- iii) If  $R_1$  and  $R_2$  are two Regular expressions (R.E.) then  $R_1 + R_2$  is
  - a) R.E. b) CFG
  - c) CSG d) Regular Grammar.
- iv) Prim's Algorithm is used to find the minimal spanning tree of a
  - a) Dense graph b) Sparse graph
  - c) Null graph d) Normal graph.
- v) A simple graph has
  - a) no self loop b) no parallel edges
  - c) both (a) and (b) d) none of these.
- 3017

| vi)   | The                                                                        | CS / BCA<br>generating functi |             |                         |  |
|-------|----------------------------------------------------------------------------|-------------------------------|-------------|-------------------------|--|
|       | a)                                                                         | $\frac{1}{1-x}$               | b)          | $\frac{1}{1+x}$         |  |
|       | c)                                                                         | $\frac{1}{(1+x)(1-x)}$        | d)          | none of these.          |  |
| vii)  | A grammar is said to be regular if it is of                                |                               |             |                         |  |
|       | a)                                                                         | Type-0                        | b)          | Туре-І                  |  |
|       | c)                                                                         | Type-2                        | d)          | Туре-З.                 |  |
| viii) | How<br>1's ?                                                               |                               | s of length | 10 contain exactly four |  |
|       | a)                                                                         | 120                           | b)          | 720                     |  |
|       | c)                                                                         | 386                           | d)          | 210.                    |  |
| ix)   | Solution of the recurrence relation $a_n = 2a_{n-1} + 1$ with $a_0 = 0$ is |                               |             |                         |  |
|       | a)                                                                         | $1 - 2^n$                     | b)          | $2^{n} - 2$             |  |
|       | c)                                                                         | $2^{n-1} - 1$                 | d)          | $2^{n} - 1$ .           |  |
| 3017  |                                                                            |                               | 3           | [ Turn over ]           |  |



- a) 20 b) 21
- c) 23 d) 19.

#### **GROUP – B**

### (Short Answer Type Questions)

Answer any *three* of the following.  $3 \times 5 = 15$ 

- 2. Let  $A = \{1, 2, 3, 4\}$  and  $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 3), (3, 3), (4, 4), (1, 2), (2, 3), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (4, 4), (1, 2), (3, 3), (3, 3), (4, 4), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), ($ 
  - (1, 3), (3, 2) }. Is *R* is equivalence relation ? Explain.
- 3. Prove that  $((P \land \rightarrow Q) \rightarrow R) \rightarrow (P \rightarrow (Q \lor R))$  is a tautology.

3017

CS / BCA / SEM-3 / BM (BCA) 
$$-303$$
  $2910$   $-11$   
Find out the characteristic roots for  $a_n + 4a_{n-1} + 3a_{n-2} = 0$   
and hence solve it.

- 5. Prove that for a graph G = (V, E), there can be even number of odd vertices.
- 6. Show that there exists no simple graph with five vertices having degrees 4, 4, 4, 2, 2.

### **GROUP - C**

### (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

- 7. a) Solve the following recurrence relation using generating function  $a_n 2a_{n-1} + a_{n-2} = 2^{n-2}$  for  $n \ge 2$  &  $a_0 = 1, a_1 = 5$ .
  - b) Show that a simple graph with *n* vertices and *k* components has at most  $\frac{(n-k)(n-k+1)}{2}$  edges. 7 + 8
- 8. a) Find the Grammar on the set of terminals  $\{a, b\}$  that generates the language  $L = \{a, ab, ab^2, ab^3, ...\}$ .
  - b) Draw the transition diagram for the FSA with  $I = \{ a, b \}, Q = \{ q_0, q_1, q_2 \}, F = \{ q_0, q_1 \}$  and  $\delta$  is given by

$$egin{arrgy}{cccc} \delta & a & b \ \hline q_0 & q_0 & q_1 \ q_1 & q_0 & q_2 \ q_2 & q_2 & q_2 \end{array}$$

7 + 8

3017

4.

[Turn over]



- b) There are 50 students in each of the senior or junior classes. Each class has 25 male and 25 female students. In how many ways can an eight-student committee be formed so that there are four females and three seniors in the committee ?
- 10. a) Find by Kruskal's Algorithm a minimal spanning tree from the following graph G.







b) Draw the graph having the following matrices as their adjacency matrices.

8 + 7

- 11. a) How many selections any number at a time, may be made from 3 white balls, 4 green balls, 1 red ball and 1 black ball, if at least one must be chosen ?
  - b) How many integral solutions are there of  $x_1 + x_2 + x_3 + x_4 + x_5 = 30$

where  $x_1 \ge 2, x_2 \ge 3, x_3 \ge 4, x \ge 2, x_5 \ge 0$ .

c) Solve the following recurrence relation :

 $a_r - 6a_{r-1} + 8a_{r-2} = r.4^r$  where  $a_0 = 8$  and  $a_1 = 22$ .

 Find the characteristic roots of the following recurrence relation :

$$a_n - 3a_{n-1} - 4a_{n-2} = 0. \qquad 3 + 4 + 5 + 3$$

\_\_\_\_\_

7

3017

[Turn over]