Name :
 Roll No. :

 Invigilator's Signature :
 \qquad
 CS / BCA / SEM-3 / BM (BCA)-301 / 2010-11 2010-11
 MATHEMATICS FOR COMPUTING

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any one of the following :

$$
10 \times 1=10
$$

i) Maximum number of edges with n vertices in a completely connected graph is
a) $(n-1)$
b) $\frac{n}{2}$
c) $\frac{(n-1)}{2}$
d) $\quad \frac{n(n-1)}{2}$.
a) $\quad A=-(A)$
b) $\quad A^{T}=A$
c) $\quad A^{T}=-A$
d) $\quad A=A$.
iii) If R_{1} and R_{2} are two Regular expressions (R.E.) then $R_{1}+R_{2}$ is
a) R.E.
b) CFG
c) CSG
d) Regular Grammar.
iv) Prim's Algorithm is used to find the minimal spanning tree of a
a) Dense graph
b) Sparse graph
c) Null graph
d) Normal graph.
v) A simple graph has
a) no self loop
b) no parallel edges
c) both (a) and (b)
d) none of these.
vi) The generating function of $\{1,1,1,1, \ldots \ldots$.
a) $\frac{1}{1-x}$
b) $\frac{1}{1+x}$
c) $\frac{1}{(1+x)(1-x)}$
d) none of these.
vii) A grammar is said to be regular if it is of
a) Type-0
b) Type-I
c) Type-2
d) Type-3.
viii) How many bit strings of length 10 contain exactly four 1's?
a) 120
b) 720
c) 386
d) 210 .
ix) Solution of the recurrence relation $a_{n}=2 a_{n-1}+1$ with $a_{0}=0$ is
a) $1-2^{n}$
b) $\quad 2^{n}-2$
c) $2^{n-1}-1$
d) $\quad 2^{n}-1$.

a) 5
b) 10
c) 20
d) 6 .
xi) How many permutations of the letters ' $A B C D E F G$ ' contain the string ' $B C D$ ' ?
a) 24
b) $\lcm{6}$
c) 120
d) 0 .
xii) If a binary tree has 20 pendant vertices, then the number of internal vertices of the tree is
a) 20
b) 21
c) 23
d) 19 .

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $\quad 3 \times 5=15$
2. Let $A=\{1,2,3,4\}$ and $R=\{(1,1),(2,2),(3,3),(4,4),(1,2)$, $(1,3),(3,2)\}$. Is R is equivalence relation ? Explain.
3. Prove that $((P \wedge \rightarrow Q) \rightarrow R) \rightarrow(P \rightarrow(Q \vee R))$ is a tautology.

5. Prove that for a graph $G=(V, E)$, there can be even number of odd vertices.
6. Show that there exists no simple graph with five vertices having degrees 4, 4, 4, 2, 2 .

GROUP - C
 (Long Answer Type Questions)

Answer any three of the following. $\quad 3 \times 15=45$
7. a) Solve the following recurrence relation using generating function $a_{n}-2 a_{n-1}+a_{n-2}=2^{n-2}$ for $n \geq 2 \quad$ \& $a_{0}=1, a_{1}=5$.
b) Show that a simple graph with n vertices and k components has at most $\frac{(n-k)(n-k+1)}{2}$ edges. $7+8$
8. a) Find the Grammar on the set of terminals $\{a, b\}$ that generates the language $L=\left\{a, a b, a b^{2}, a b^{3}, \ldots\right\}$.
b) Draw the transition diagram for the FSA with $I=\{a, b\}, Q=\left\{q_{0}, q_{1}, q_{2}\right\}, F=\left\{q_{0}, q_{1}\right\}$ and δ is given by

δ	a	b
q_{0}	q_{0}	q_{1}
q_{1}	q_{0}	q_{2}
q_{2}	q_{2}	q_{2}

$$
7+8
$$

9. a) Find the CNF of the following statement URESD

$$
\neg(p \vee q) \leftrightarrow(p \wedge q)
$$

b) There are 50 students in each of the senior or junior classes. Each class has 25 male and 25 female students. In how many ways can an eight-student committee be formed so that there are four females and three seniors in the committee ?
10. a) Find by Kruskal's Algorithm a minimal spanning tree from the following graph G.

b) Draw the graph having the following matricesas their adjacency matrices.

$\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$

$$
8+7
$$

11. a) How many selections any number at a time, may be made from 3 white balls, 4 green balls, 1 red ball and 1 black ball, if at least one must be chosen ?
b) How many integral solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=30$ where $x_{1} \geq 2, x_{2} \geq 3, x_{3} \geq 4, x \geq 2, x_{5} \geq 0$.
c) Solve the following recurrence relation :
$a_{r}-6 a_{r-1}+8 a_{r-2}=r .4^{r}$ where $a_{0}=8$ and $a_{1}=22$.
d) Find the characteristic roots of the following recurrence relation :
$a_{n}-3 a_{n-1}-4 a_{n-2}=0$.
$3+4+5+3$
\qquad
