

CS/BCA/SEM-3/BM-301/2012-13

2012

MATHEMATICS FOR COMPUTING

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The proposition $p \wedge(q \wedge \sim p)$ is a
a) contradiction
b) tautology
c) both (a) and (b)
d) none of these.
ii) The type of the grammar G which consists of productions $P=\{S \rightarrow b A B, A \rightarrow a B, a b A b b \rightarrow a b b b\}$ is
a) Type-0
b) Type-1
c) Type-2
d) Type-3.
iii) ρ is a relation on the set $R \times R$ of ordered paiss of real numbers as follows :
 F or all $(a, b),(c, d) \varepsilon R \times R(a, b)(c, d) \Leftrightarrow a=c$ Then ρ is
a) symmetric only
b) symmetric but not reflective
c) equivalence relation
d) none of these.
iv) Let $A=R-\{3\}$ and $B=R-\{1\}$.

If $f: A \rightarrow B: f(x)=\frac{x-2}{x-3}$ then
a) f is into
b) f is surjective
c) f is bijective
d) none of these.
v) A pseudo graph
a) must has loops
b) does not have loop
c) must have parallel edges
d) none of these.
vi) Minimum height of a n vertex binary tree is
a) $\frac{n-1}{2}$
b) $\frac{n+1}{2}$
c) $\left\lfloor\log _{2}^{(n+1)}-1\right\rfloor$
d) $\quad\left|\log _{2}^{(n+1)}-1\right|$.

vii) If the general term of the sequence $\left\{a^{k}\right\}$ be \hat{a}^{k} which will be the generating function ?
a) $\frac{1}{1-x}$
b) $\frac{a}{1-x}$
c) $\frac{k}{1-x}$
d) $\frac{1}{1-a x}$.
viii) A simple graph with n vertices has maximum
a) $\frac{n(n-1)}{2}$ edges
b) ($n-1$) edges
c) $\frac{n(n+1)}{2}$ edges
d) n^{2} edges.
ix) If a language L is accepted by a automata M then
a) every string in L is accepted by M
b) at least one string in L is accepted by M
c) no string of L is accepted by M
d) only one string is accepted by M.
x) Number of elements contained in an incidence matrix of a digraph is
a) 1
b) 2
c) 3
d) none of these.
xi) The degree of the origin of the longest path in a tree is
a) 1
b) 2
c) 3
d) none of these.
xii) Choose the correct statement :
a) Path is an open walk

b) Every walk is trail
c) Every trail is a path
d) A vertex cannot appear twice in a walk.
xiii) How many permutations of the letters $A B C D E F G$ contain in the string $B C F$?
a) 24
b) 6 !
c) 120
d) 252 .
xiv) A spanning tree has
a) one circuit
b) no circuit
c) two circuits
d) none of these.
xv) You have five friends. In how many ways can you invite them ?
a) 51
b) 36
c) 25
d) none of these.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following $\quad 3 \times 5=15$
2. Prove that $((P \wedge \sim Q) \rightarrow R) \rightarrow(P \rightarrow(Q \vee R))$ is a tautology.
3. In an examination a minimum is to be secured in each of the 5 subjects for a pass. In how many ways can a candidate fail?
4. Find the sequence corresponding to the generating function $\frac{3+7 x}{(1-x)(1+4 x)}$.

5. Suppose G is a non-directed graph with 12 edges. AIf G has 6 vertices each of degree 3 and rest have degree tess than 3 , find the minimum number of vertices in G.
6. What is Deterministic finite Automata (DFA) ? Explain with suitable example.
7. Write a short note on Moore Machine.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
8. a) Find by Prim's algorithm a spanning tree with minimum weight from the graph given below. Also calculate total weight of spanning tree.

b) Prove that a connected graph n with $n-1$ vertices and edges is a tree.
c) Determine the value of n if $4 \times{ }^{n} P_{3}={ }^{n+1} P_{3} . \quad 6+6+3$
9. a) Find the grammar on the set of terminals $\{a, b\}$ that generates the language $L=\left\{a, a b, a b^{2}, a b^{3}, \ldots\right\}$.
b) Draw the transition diagram for the FSA with $\overline{b_{亏}\{a, b\}}$, $Q=\left\{q_{0}, q_{1}, q_{2}\right\}, F=\left\{q_{0}, q_{1}\right\}$ and δ is given by concin

Δ	a	b
Q_{0}	Q_{0}	Q_{1}
Q_{1}	Q_{0}	Q_{2}
Q_{2}	Q_{2}	Q_{2}

$$
7+8
$$

10. a) Write DNF of the following statement :

$$
\neg\{\neg(p \leftrightarrow q) \wedge r\}
$$

b) Verify whether the argument given below is valid or not :

All mammals are animals. Some mammals are twolegged. Therefore, some animals are two-legged.
c) Prove the following equivalence :
$\neg p \wedge q \Leftrightarrow \neg(p \vee(\neg p \wedge q))$
11. a) What is Grammar?
b) Construct the sate diagram for finite state machine with state table as under :

State	Input		Output	
	0	1	0	1
	$S 0$	$S 1$	$S 1$	1
$S 1$	$S 3$	$S 0$	1	0
$S 2$	$S 1$	$S 0$	1	0
$S 3$	$S 2$	$S 1$	0	0

12. a) Examine if the following two graphs are isomorphic

b) Solve the following recurrence relation using generating function :

$$
a_{n}-2 a_{n-1}+a_{n-2}=2^{n-2} \text { for } n \geq 2 \text { and } a_{0}=1, a_{1}=5 .
$$

c) Write short notes on any two of the following :
i) Spanning Graph
ii) Hamiltonian Graph
iii) Digraph. $5+5+5$

