Name :	
Roll No. :	An Alaman Of Exercising and Excellent
Invigilator's Signature :	

CS/BCA/SEM-3/BM-301/2012-13

2012

MATHEMATICS FOR COMPUTING

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) The proposition $p \land (q \land \neg p)$ is a
 - a) contradiction b) tautology
 - c) both (a) and (b) d) none of these.

ii) The type of the grammar *G* which consists of productions $P = \{S \rightarrow bAB, A \rightarrow aB, abAbb \rightarrow abbb\}$ is

- a) Type-0 b) Type-1
- c) Type-2 d) Type-3.

[Turn over

iii) ρ is a relation on the set $R \times R$ of ordered pairs of real numbers as follows :

F or all (a, b), (c, d) $\varepsilon R \times R$ (a, b) (c, d) $\Leftrightarrow a = c$

Then ρ is

- a) symmetric only
- b) symmetric but not reflective
- c) equivalence relation
- d) none of these.
- iv) Let $A = R \{3\}$ and $B = R \{1\}$.

If
$$f: A \to B: f(x) = \frac{x-2}{x-3}$$
 then

- a) f is into b) f is surjective
- c) *f* is bijective d) none of these.
- v) A pseudo graph
 - a) must has loops
 - b) does not have loop
 - c) must have parallel edges
 - d) none of these.

vi) Minimum height of a *n* vertex binary tree is

a)
$$\frac{n-1}{2}$$
 b) $\frac{n+1}{2}$
c) $\lfloor \log_2^{(n+1)} - 1 \rfloor$ d) $\lfloor \log_2^{(n+1)} - 1 \rfloor$.

CS/BCA/SEM-3/BM-30192012-13 m of the sequence $\{a^k\}$ be a^k which

vii) If the general term of the sequence $\{a^k\}$ be a^k which will be the generating function ?

a)
$$\frac{1}{1-x}$$
 b) $\frac{a}{1-x}$

c)
$$\frac{k}{1-x}$$
 d) $\frac{1}{1-ax}$.

viii) A simple graph with n vertices has maximum

- a) $\frac{n(n-1)}{2}$ edges b) (n-1) edges
- c) $\frac{n(n+1)}{2}$ edges d) n^2 edges.
- ix) If a language L is accepted by a automata M then
 - a) every string in L is accepted by M
 - b) at least one string in L is accepted by M
 - c) no string of L is accepted by M
 - d) only one string is accepted by *M*.
- x) Number of elements contained in an incidence matrix of a digraph is
 - a) 1 b) 2
 - 3 d) none of these.

xi) The degree of the origin of the longest path in a tree is

- a) 1 b) 2
- c) 3 d) none of these.

3022

c)

[Turn over

- two circuits none of these. c) d)
- xv) You have five friends. In how many ways can you invite them ?

a) 51	b)	36	
-------	----	----	--

none of these. c) 25 d)

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following $3 \times 5 = 15$

- 2. Prove that $((P \land \neg Q) \rightarrow R) \rightarrow (P \rightarrow (Q \lor R))$ is a tautology.
- 3. In an examination a minimum is to be secured in each of the 5 subjects for a pass. In how many ways can a candidate fail?
- 4. Find the sequence corresponding to the generating function 3 + 7x $\frac{1-x(1+4x)}{(1-x)(1+4x)}$

- Suppose G is a non-directed graph with 12 edges. If G has
 6 vertices each of degree 3 and rest have degree less
 than 3, find the minimum number of vertices in G.
- 6. What is Deterministic finite Automata (DFA) ? Explain with suitable example.
- 7. Write a short note on Moore Machine.

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

 a) Find by Prim's algorithm a spanning tree with minimum weight from the graph given below. Also calculate total weight of spanning tree.

- b) Prove that a connected graph n with n 1 vertices and edges is a tree.
- c) Determine the value of *n* if $4 \times {}^{n}P_{3} = {}^{n+1}P_{3}$. 6 + 6 + 3
- 9. a) Find the grammar on the set of terminals $\{a, b\}$ that generates the language $L = \{a, ab, ab^2, ab^3, ...\}$.

3022

[Turn over

CS/BCA/SEM-3/BM-301/2012-13

b) Draw the transition diagram for the FSA with $I = \{a, b\}$, $Q = \{q_0, q_1, q_2\}$, $F = \{q_0, q_1\}$ and δ is given by

Δ	а	b
Q ₀	Q_0	Q_1
Q_1	Q_0	Q_2
Q ₂	Q_2	Q_2

7 + 8

10. a) Write DNF of the following statement :

 $\neg \{\neg (p \leftrightarrow q) \land r\}$

- b) Verify whether the argument given below is valid or not :
 All mammals are animals. Some mammals are two-legged. Therefore, some animals are two-legged.
- c) Prove the following equivalence :

$$\neg p \land q \Leftrightarrow \neg (p \lor (\neg p \land q)) \qquad 5 + 5 + 5$$

- 11. a) What is Grammar ?
 - b) Construct the sate diagram for finite state machine with state table as under :

State		out	Output	
State	0	1	0	1
			1	0
$\rightarrow S0$	S1	S1	1	0
<i>S</i> 1	S3	S0	1	0
S2 S3	S1	SO	1	0
S3	S2	<i>S</i> 1	0	0

5 + 10

b) Solve the following recurrence relation using generating function :

$$a_n - 2a_{n-1} + a_{n-2} = 2^{n-2}$$
 for $n \ge 2$ and $a_0 = 1, a_1 = 5$.

- c) Write short notes on any *two* of the following :
 - i) Spanning Graph
 - ii) Hamiltonian Graph
 - iii) Digraph. 5 + 5 + 5

[Turn over