Full Marks: 70

Turn Over

CS/BCA/Even/Sem-4th/BM-401/2015

Time Allotted: 3 Hours

WEST BENGAL UNIVERSITY OF TECHNOLOGY

BM-401

STATISTICS, NUMERICAL METHODS & ALGORITHMS

The questions are of equal value.
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable
All symbols are of usual significance.

GROUP A(Multiple Choice Type Questions)

	Answer any ten The degree of pr	questions. ecision of Simpson'	s 1/3 rd rule is		$10 \times 1 = 10$		
		-	(C) 3	(D) 4			
(ii)) The rate of conv	ergence of bisection	method is				
	(A) linear	(B) quadratic	(C) cubic	(D) none of these			
(iii) If $f(x) = \frac{1}{x^2}$, th	en divided differenc	e f(a, b) is				
	$(A) \frac{a+b}{(ab)^2}$	$(\beta) - \frac{a+b}{(ab)^2}$	$(C) \frac{1}{a^2 - b^2}$	(D) $\frac{1}{a^2} - \frac{1}{b^2}$			
(iv) Which of the fol	lowing relation is tru	ue?				
	$(A) \Delta = E - 1$	(B) $\Delta \cdot \nabla = \Delta - \nabla$	(C) $\Delta \cdot \nabla = \Delta + \nabla$	(D) $\Delta = 1 - E$			
(v)	v) If $\frac{5}{3}$ is approximated to 1.6667, then absolute error is						
. '	(A) 0.000033	(B) 0.000043	(C) 0.000045	(D) 0.000051			

http://www.makaut.com

4340

CS/BCA/Even/Sem-4th/BM-401/2015

(vi)	When the Guass transformed into	s elimination meth	nod is used to so	olve $\mathbf{B}\mathbf{X} = \mathbf{A}$, \mathbf{B} is	,
	(A) a lower triang	gular matrix	(B) an upper trian	ngular matrix	
	(C) zero matrix		(D) none of these) }	
(vii)	Order of h in the	error expression of	Simpson's 1/3 rd ru	le is	
	(A) 2	(B) 4	(C) 3	(D) 5	
(viii)	If $f(x) = \dot{p}.e^{ax}$, the	n $\Delta f(x)$ is			
	(A) $be^{ax}(e^{ah}-1)$		(B) $be^{ax}(a-1)$		
	(C) $be^{ax}(1-e^{ah})$		(D) none of these		
(ix)	The number of si	gnificant digits in 0	0.00303 is		
	(A) 6	(B) 5	(C) 3	(D) done of these	
(x)	Newton's forward	d interpolation form	nula uses		
1	(A) the front part(C) any part of th		(B) the end part of (D) middle of the		
(xi)	Diagonal Domina	ance is must for			
		•			
(xii)	If $f(x) = 101$ and	$h = 3$, then $\Delta f(x)$ is	equal to		
	(A) 100	(B) 99	(C) 1	(D) 0	
			OUP B Type Questions)		* * * * * * * * * * * * * * * * * * *
	Answer any three	e questions.	•		$3\times5=15$
2.	Evaluate $\Lambda^2 \cos 2$				

2

Evaluate $\sqrt{12}$ to three places of decimals by Newton-Raphson method.

3.

CS/BCA/Even/Sem-4th/BM-401/2015

- 4. Evaluate $\int_0^1 \frac{dx}{1+x}$ by Simpson's $1/3^{rd}$ rule taking 11 ordinates and hence find the value of $\ln 2$. Correct up to five significant figures.
- 5. Use Euler's Method to solve the differential equation $\frac{dy}{dx} = xy$, for x = 1. Given that when x = 0, y = 1. Take h = 0.2.
- 6. Find by Lagrange's interpolation formula for the polynomial which corresponds to the following data.

x :	-1	0	2	5
F(x):	9	5	3	15

GROUP C (Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

8+7

7+8

- 7. (a) Evaluate $\int_0^2 \frac{dx}{1+x^2}$ correct up to 4 places of decimal by using Weddle's rule, taking 12 intervals.
 - (b) Estimate the missing term

	x :	2	4	6	8	10
ĺ	F(x):	5	13	*	53	85

- 8. (a) Find the roots of the equation $x^2 3x 2 = 0$ by using Newton-Raphson Method.
 - (b) Solve the following system of equations by using Jacobi Iteration Method:

$$8x + 2y - 2z = 08$$

 $x - 8y + 3z = -4$
 $2x + y + 9z = 12$.

9. (a) Starting from Gauss-Legendre Quadrature formulas establish the trapezoidal 8+7 rule of integration.

Turn Over

4340

CS/BCA/Even/Sem-4th/BM-401/2015

- (b) Evaluate $\int_0^1 (4x+3x^2) dx$, by using the trapezoidal rule taking 10 intervals. Compute the exact value and the absolute and relative errors in your results.
- 10.(a) Find the smallest positive root of the equation $3x^3 9x^2 + 8 = 0$, correct up to four places of decimal, using Newton-Raphson method.
 - (b) Find y(1.1) using Runge-Kutta method of fourth order, given that $\frac{dy}{dx} = y^2 + xy, \ y(1) = 1.$
 - (c) Use the method of bisection to compute a root of the equation $x^3 4x 1 = 0$ lying between 2 and 3 up to four significant figures.
- 11.(a) Solve $\frac{dy}{dx} = x^2y 1$, y(0) = 1 by Taylor's series. Also find y(0.1) correct up to seven significant digits.
 - (b) Solve the equation $\frac{dy}{dx} = x + y$, y(0) = 1 at x = 0.2 by Picard's method (take only three integrations).
 - (c) Use Euler's method to find the numerical solution of the following differential equation. $\frac{dy}{dx} = 1 + x x^2$, y(0) = 1. Taking h = 0.02 find y(0.1).
- 12(a) Use Regula-Falsi method to evaluate the smallest real root of the equation 6+4+5 $x^3 + x^2 - 1 = 0$.
 - (b) Solve the following system of equations by LU method.

$$3x + 4y + 7z = 8$$

 $x + 2y + 3z = 6$
 $x + 5y + 9z = 9$.

(c) Use Newton's divided difference formula to find f(8) and f(15) from the following table:

x:	1	5	7	9
f(x):	89	178	278	321