

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BM-401

STATISTICS, NUMERICAL METHODS AND ALGORITHMS

Time Allotted: 3 Hours

IV/5322(4)-4083

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

				15/0				
1.	Cho	ose	the	correct	alternativ	res	for any	ten of the
	follo	owin	g:		*.			$10 \times 1 = 10$
	i)	The	nun	nber of si	ignificant	figu	res in 0.0	02560 is
		a)	6		1	b)	5	
		c)	4		(d)	none of t	hese.
	ii)	Wh	ich o	f the foll	owing rela	tior	is is true	?
		a)	E =	1 + A		b)	E = 1 - 2	7
		c)	E =	$1/\Delta$		d)	None of	these.

http://www.makaut.com

iii) If f(3) = 4, f(4) = 13 and f(6) = 43, then f(5) =

a) 20

b) 26

c) 25

d) none of these.

iv) In Simpson's 1/3 rd rule for finding $\int_a^b f(x)dx$, f(x) is approximated by

- a) Line segment
- b) Parabola
- c) Circular sector
- d) None of these.

v) In Guass elimination method, the given system of equations represented by AX=B is converted to another system UX=Y where U is

- a) Diagonal matrix
- b) Identity matrix
- c) Upper triangular matrix
- d) none of these.

vi) The Newton-Raphson's method fails when

a) f'(x) = 1

- b) f'(x) = 0
- c) f'(x) = -1
- d) none of these.

vii)	One	of the roots of $x^3 - 1$	7x+	5 = 0 lies in between				
	a)	1 and 2	b)	0 and 1				
	c)	-1 and 0	d)	none of these.				
viii)	Run	ge-Kutta formula has	a tr	uncation error, which				
	is of	the order of						
	a)	h ²	b)	h ⁴				
	c)	h ⁵	d)	none of these.				
ix)	The	percentage error in a	appro	eximating $\frac{4}{3}$ to 1.3333				
	is							
	a)	0.0025%	b)	25%				
	c)	0.00025%	d)	none of these.				
x)	Find the value of $\Delta^3 y$ from the following table.							
	x:	0 -	3					
	<i>y</i> :	3 6 11 1	10					
	a)	0	b)	3				
	c)	5	d)	none of these.				
xi)	The degree of precision of Simpson's 1/3 rd rule is							
	a)	1	b)	3				
	c)	5	d)	none of these.				

xii) The Lagrange's interpolation polynomial of f(x) is

x:	1	3	4
y:	4	12	19

- a) $3x^2 12$
- b) $x^2 12$

c) $x^2 - 4$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{1 0.162 \sin^2 \varphi} \, d\varphi$, by Simpson's one-third rule, correct up to two places of decimal, taking three points.
- 3. Find the root of $x^2 + 2x 2 = 0$, by Newton-Raphson method, correct up to two significant figures.
- 4. Find the value of f(2) from the following table:

x: 1 2 3 4 5

f(x): 7 -- 13 21 37.

5. Compute f (0.23) and f (0.29) using suitable formula from the table below:

x: 0.20 0.22 0.24 0.26 0.28 0.30

f(x): 1.6596 1.6693 1.6804 1.6912 1.7024 1.7139

6. Given $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$, y(1) = 1. Evaluate y(1.2) by modified

Euler's method correct up to 4 decimal places.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. (a) Solve the system of linear equations by Guass Elimination method:

$$5x_1 - x_2 = 9$$

$$-x_1 + 5x_2 - x_3 = 4$$

$$-x_2 + 5x_3 = -6$$

b) Evaluate $\int_0^1 \frac{1}{x^2 + 1}$ using Simpson's 1/3 rd rule taking n = 6, hence find the value of π .

c) Prove that : $E^{-1} = 1 - D$.

5+5+5

8. a) Find the value of √2 correct up to four significant figures from the following table:

x:'	1.9	2.1	2.3	2.5	2.7
$f(x) = \sqrt{x}$	1.3784	1.4491	1.5166	1.5811	1.6432

- b) Find the roots of the equation $x^3 4x + 1 = 0$ using Regula Falsi method.
- c) $\int_0^1 e^x dx$ by Trapezoidal rule taking h=0.1. 5 + 5 + 5

5

9. a) Solve the following system of equations by L-U
Factorization method:

$$x_1 + x_2 - x_3 = 2$$

$$2x_1 + 3x_2 + 5x_3 = -3$$

$$3x_1 + 2x_2 - 3x_3 = 6$$

b) Find the polynomial of the least degree which attains the prescribed values of the given points:

x:	0	1	2	3
y:	3	6	11	18

Hence find y for x = 1.1.

- c) Using Newton-Raphson method, find a real root of the following equation correct to three decimal places $x^4 x 1 = 0$. 5 + 5 + 5
- 10. a) Using Runge-Kutta method of fourth order with h=0.1 find y(1.1). Given $\frac{dy}{dx} = y^2 + xy$, y(1) = 1.
 - b) Using divided difference formula, evaluate f(8).

x:	4	5	7	10	11	13
f(x):	48	100	294	900	1210	2028

c) Solve the following system of equations by Gauss-Seidel iterative method:

$$7x + y + 54z = 110$$

$$27x + 6y - z = 85$$

$$6x + 15y + 2z = 72.$$

5+5+5

- 11. a) Find A^{-1} where $A = \begin{pmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$.
 - b) Using Taylor's series method find y at x = 1.1, 1.2 solving $\frac{dy}{dx} = (x^2 + y^2)$ given by y(1) = 2.3.
 - c) Write down the general rules for rounding off a number to n significant figures. 6+6+3