Name :	
Roll No. :	A Dame of Example and Example
Invigilator's Signature :	

CS/BCA/SEM-4/BM-401/2010 2010 STATISTICS, NUMERICAL & METHODS & ALGORITHMS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) If *f* (*x*) is a polynomial of degree *n*, then is a constant.
 - a) (n + 1) th order difference
 - b) *n*th order difference
 - c) (n-1) th order difference
 - d) (n-2) th order difference.
 - ii) One of the roots of the equation $x^2 + 2x 2 = 0$ lies in between
 - a) 1 & 2 b) 0 & 0.5
 - c) 0.5 & 1.0 d) none of these.

4175

[Turn over

CS/BCA/SEM-4 BY 2010
ix) Let
$$f(x) = 0$$
 be the equation of a curve. Then the condition that one of the roots of $f(x)$ lies between $x = a$ and $x = b$ is
a) $f(a) > 0$ b) $f(a) f(b) < 0$
c) $f(a) f(b) > 0$ d) none of these.
x) Simpson's $\frac{1}{3}$ rd rule gives us exact result for a polynomial of degree
a) less than 3
b) less than equal to 3
c) greater than equal to 3.
xi) If $u_0 = 1$, $u_1 = 1$ and $u_2 = 21$, then $\Delta^2 u_0$ is
a) 10 b) 11
c) 0 d) 20.
xii) By evaluating $\int_0^{x} \frac{dx}{1+x^2}$ by numerical integration method, we can obtain the approximate value of
a) $log_e 2$ b) $\frac{\pi}{2}$
c) e d) $log_{10} 2$.
xiii) For a system of equation $Ax = b$, a solution exists if and only if A is
a) symmetric b) singular
c) orthogonal d) diagonal.

4175

[Turn over

а

xiv) Equation AX = B has unique solution if

a) Rank
$$(A) \neq$$
 Rank (AB)

- b) Rank (A) < Rank (AB)
- c) Rank (A) = Rank (AB) = No. of unknowns
- d) Rank (A) = Rank $(AB) \neq$ No. of unknowns.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Prove that
$$D = \frac{1}{h} \log \frac{1}{(1 - \nabla)}$$
, where *D* is differential operator

and ∇ is backward difference operator.

3.	Fino	l the valu	e of $\frac{\mathrm{d}y}{\mathrm{d}x}$ for	or $x = 1.0$ fr	rom the fo	ollowing ta	ble :

<i>x</i> :	1.0	1.2	1.4	1.6	1.8	2.0
y:	2.7183	3.3201	4·0552	4·9530	6·0496	7·3891

4. Find a root of the equation $x^3 - 3x - 5 = 0$ by the method of

false position correct to 2 decimal places.

5. Using Taylor's method obtain an approximate value of *y* at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, *y* (0) = 0.

CS/BCA/SEM-4 BN 400/2010 6. Solve the system of equations by Gauss elimination method :

2x + 3y + z = 9

x + 2y + 3z = 6

3x + y + 2z = 8

correct upto three significant figures.

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Evaluate y (1·1) using Runge-Kutta method of order 4 for the problem

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + y^2, \quad y(1) = 0$$

		1	2	6
b)	Find the inverse of the matrix	2	5	15
		6	15	46

by Gauss elimination method.

8. a) Compute f (0.29) from the following table by using Newton's backward interpolation formula :

<i>x</i> :	0.20	0.22	0.24	0.26	0.28	0.30
<i>y</i> :	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

CS/BCA/SEM-4/BM-401/2010

b) The following are the mean temperature (Fahrenheit) on the three days, 30 days apart round the periods of summer and winter. Estimate the approximate dates and the values of the maximum dates and the values of

Dav	Sum	imer	Winter		
Day Date Temperature		Date	Temperature		
0	15th June	58.8	16th December	40.7	
30	15th July	63.4	15th January	38.1	
60	14th August	62.5	14th February	39.3	

the maximum and minimum temperature.

9. a) Using Newton's divided difference formula, construct

the interpolation polynomial and hence compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 5 by using the following data :

<i>x</i> :	0	2	3	4	7	9
y :	4	26	58	112	466	922

b) Evaluate $\int_{0}^{1} x^{3} dx$ by Trapezoidal rule with n = 5.

 $e^x - 3x = 0$

correct up to 3 decimal places.

b) Use Euler's method to find the numerical solution of the following differential equation :

$$f'(x) = 1 + x - x^2, y (0) = 1, h = 0.02;$$

find y (0.1).

11. a) Find the missing term in the following table :

<i>x</i> :	0	1	2	3	4	5
y :	0		8	15		35

b) What is the lowest degree polynomial which takes the following values :

<i>x</i> :	0	1	2	3	4	5
f(x):	1	4	9	16	25	36

Hence calculate f(x) and also find f(6).