ancime ithertion
 UResh
 Name :
 Roll No.
 \qquad
 Invigilator's Signature :
 \qquad
 CS/BCA/SEM-4/BM-401/2011 2011
 STATISTICS, NUMERICAL METHODS AND ALGORITHMS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following : $\quad 10 \times 1=10$
i) The number of significant digit in 0.00303 is
a) 6
b) 5
c) 3
d) none of these.
ii) When rounded off after 4 decimal places $0 \cdot 003256$ becomes
a) $0 \cdot 0032$
b) $0 \cdot 0033$
c) $0 \cdot 0326$
d) none of these.

CS /BCA/SEM-4/BM-401/2011
iii) Divided difference formula is used for
a) equispaced point

b) unequally spaced points
c) \quad both (a) \& (b)
d) none of these.
iv) Newton's forward formula is used for interpolating the value of y near the
a) beginning of a set
b) end of a set
c) central of the set
d) none of these.
v) In backward difference $\nabla^{2} f(x)$ is
a) $\quad \nabla f(x)-\nabla f(x+h)$
b) $\quad \nabla^{2} f(x)-\nabla^{2} f(x-h)$
c) $\quad \Delta f(x)-\Delta f(x+h)$
d) none of these.
vi) The iterative method to solve a system of equation is
a) Gauss-elimination
b) Gauss-Jordan
c) Gauss-Seidel
d) None of these.
vii) The error in the Simpson's $\frac{1}{3}$ rd method is of order
a) h
b) $\quad h^{2}$
c) $\quad h^{3}$
d) $\quad h^{4}$.
viii) Newton-Raphson method fails when
a) $f^{\prime}(x)=0$
b)
$f^{\prime}(x)>0$-racousinin
c) $f^{\prime}(x)<0$
d) none of these.
ix) Diagonal dominance is must for
a) Gauss-Seidel method
b) Gauss-Jordan's matrix inversion method
c) Gauss elimination method
d) none of these.
x) The second order Runge-Kutta formula has a truncation error which is of order of
a) $\quad h^{2}$
b) h^{3}
c) $\quad h^{4}$
d) none of these.
xi) The order of h in the error expression of trapezoidal rule is
a) 1
b) 2
c) 3
d) 4 .
xii) Relative error in numerical method where $x_{\Gamma}=$ true value of solution $\neq 0, x_{A}=$ Approximate value of solution is
a) $\left|x_{\Gamma}-x_{A}\right|$
b) $\frac{\left|x_{\Gamma}-x_{A}\right|}{x_{\Gamma}}$
c) $\quad \frac{\left|x_{\Gamma}-x_{A}\right|}{x_{\Gamma}} \times 100$
d) none of these.

CS/BCA/SEM-4/BM-401/2011
xiii) Which is the direct method?
a) Gauss-elimination method

b) Gauss-Jacobi method
c) Gauss-Seidel method
d) none of these.
xiv) Newton-Raphson method is also known as
a) chord method
b) tangent method
c) secant method
d) none of these.

GROUP - B

(Short Answer Type Guestions)

Answer any three of the following. $3 \times 5=15$
2. By means of Newton's divided differential interpolation formula find the value of $f(8)$ from the following table :

$x=$	4	5	7	10	11	13
$f(x)=$	48	100	294	900	1210	2028

3. Prove that for small values of ' h ' $\Delta^{n+1} f\left(x_{0}\right) \approx h^{n+1} f^{n+1}\left(x_{0}\right)$.
4. Evaluate $\int_{0}^{1} \cos x d x$ taking five equal intervals. Explain the reason behind your choice of integration formula used.
5. Compute $f(1-42)$ from the following data :

x	$1 \cdot 1$	$1 \cdot 2$	$1 \cdot 3$	$1 \cdot 4$
$f(x)$	$7 \cdot 831$	$8 \cdot 728$	$9 \cdot 697$	$10 \cdot 744$

6. Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} y-1$, where $y(0)=1$ by Tayors series method. Also find $y(0 \cdot 1)$ correct to seven signifieant digits.
7. How many digits are to be taken in computing $\sqrt{13}$ so that error does not exceed $0 \cdot 1 \%$?

GROUP - C

(Long Answer Type Guestions)

Answer any three of the following. $3 \times 15=45$
8. a) Compute $f(1 \cdot 16)$ from the following table :

x	$1 \cdot 11$	$1 \cdot 12$	$1 \cdot 13$	$1 \cdot 14$	$1 \cdot 15$	$1 \cdot 16$
$f(x)$	6.2321	6.2544	$6 \cdot 2769$	6.2996	6.3225	6.3456

b) Find the positive root of the equation $x^{2}+2 x-2=0$, correct up to 2 significant figures by Newton-Raphson method.
c) Estimate the missing term from the table :

x	2	4	6	8	10
y	5	13	$*$	53	85

9. a) Solve the following system of linear equations by GaussSeidel method :

$$
\begin{aligned}
& 6 x+15 y+2 z=72 \\
& 27 x+6 y-z=85 \\
& x+y+54 z=110
\end{aligned}
$$

CS /BCA/SEM-4/BM-401/2011 $h=\frac{1}{6}$ correct up to 3 decimal places.
c) Find the root of the equation $x \log _{10} x=1 \cdot 2$, correct to 2 decimal places by Bisection method.

$$
6+4+5
$$

10. a) Solve by Gauss elimination method :
$x+2 y+3 z=10$
$x+3 y-2 z=7$
$2 x-y+z=5$.
b) Evaluate $\int_{0}^{1}\left(4 x-3 x^{2}\right) \mathrm{d} x$ taking 10 intervals by Trapezoidal rule and then find the absolute error.
c) Prove that $E=e^{h D}, D=\frac{\mathrm{d}}{\mathrm{d} x}$ and E is the shift operator.

$$
7+5+3
$$

11. a) Use Euler's method to find the solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=x-y$ with $y(0)=1, h=0 \cdot 2$ at $x=0 \cdot 4$.
b) Find the value of $y(0.2)$ by 4 th order Runge-Kutta method which is correct to four decimal places, where $\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2}-x^{2}, y(0)=1$ taking $h=0 \cdot 1 . \quad 7+8$
12. a) Compute a root of the equation $x^{2} e^{-x / 2=-4 \text { in }}$ the interval [0, 2] by secant method correct to 3 decimal places.
b) Find the inverse of the matrix $\left[\begin{array}{rrr}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$ by Gauss, method.
13. a) Solve the following equation by Jacobi's iteration method :
$10 x-2 y-z-w=3$
$-2 x+10 y-z-w=15$
$-x-y+10 z-2 w=27$
$-x-y-2 z+10 w=-9$
b) Solve by $L V$ factorization method :

$$
\begin{aligned}
& 2 x-3 y+z=-1 \\
& x+2 y-3 z=-4 \\
& x-4 y+z=-6
\end{aligned}
$$

$$
7+8
$$

