Name :	
Roll No. :	A Grane (V Executing and Exchant
Invigilator's Signature :	

CS/BCA/SEM-4/BM-401/2011 2011 STATISTICS, NUMERICAL METHODS AND ALGORITHMS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) The number of significant digit in 0.00303 is
 - a) 6 b) 5
 - c) 3 d) none of these.
 - ii) When rounded off after 4 decimal places 0.003256 becomes
 - a) 0.0032 b) 0.0033
 - c) 0.0326 d) none of these.

4175

[Turn over

CS/BCA/SEM-4/BM-401/2011

- iii) Divided difference formula is used for
 - a) equispaced point
 - b) unequally spaced points
 - c) both (a) & (b)
 - d) none of these.
- iv) Newton's forward formula is used for interpolating the value of *y* near the
 - a) beginning of a set
 - b) end of a set
 - c) central of the set
 - d) none of these.
- v) In backward difference $\nabla^2 f(x)$ is
 - a) $\nabla f(x) \nabla f(x+h)$ b) $\nabla^2 f(x) \nabla^2 f(x-h)$
 - c) $\Delta f(x) \Delta f(x+h)$ d) none of these.
- vi) The iterative method to solve a system of equation is
 - a) Gauss-elimination b) Gauss-Jordan
 - c) Gauss-Seidel d) None of these.
- vii) The error in the Simpson's $\frac{1}{3}$ rd method is of order
 - a) h b) h^2
 - c) h^3 d) h^4 .

4175

[Turn over

CS/BCA/SEM-4/BM-401/2011

- xiii) Which is the direct method ?
 - a) Gauss-elimination method
 - b) Gauss-Jacobi method
 - c) Gauss-Seidel method
 - d) none of these.

xiv) Newton-Raphson method is also known as

a)	chord method	b)	tangent method
----	--------------	----	----------------

c) secant method d) none of these.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. By means of Newton's divided differential interpolation formula find the value of f(8) from the following table :

	<i>x</i> =	4	5	7	10	11	13
ſ	(x)=	48	100	294	900	1210	2028

3. Prove that for small values of 'h' $\Delta^{n+1} f(x_0) \approx h^{n+1} f^{n+1}(x_0)$.

- 4. Evaluate $\int_{0}^{1} \cos x \, dx$ taking five equal intervals. Explain the reason behind your choice of integration formula used.
- 5. Compute f(1.42) from the following data :

x	$1 \cdot 1$	1.2	1.3	1.4
f(x)	7.831	8.728	9.697	10.744

- 6. Solve $\frac{dy}{dx} = x^2y 1$, where y (0) = 1 by Taylor's series method. Also find y (0.1) correct to seven significant digits.
- 7. How many digits are to be taken in computing $\sqrt{13}$ so that error does not exceed 0.1% ?

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

CS/BCA/SEM-4/BM 401

2011

8. a) Compute f(1.16) from the following table :

x	1.11	1.12	1.13	1.14	1.15	1.16
f(x)	6.2321	6.2544	6·2769	6·2996	6.3225	6.3456

- b) Find the positive root of the equation $x^2 + 2x 2 = 0$, correct up to 2 significant figures by Newton-Raphson method.
- c) Estimate the missing term from the table :

x	2	4	6	8	10
y	5	13	*	53	85

9. a) Solve the following system of linear equations by Gauss-Seidel method :

> 6x + 15y + 2z = 7227x + 6y - z = 85x + y + 54z = 110.

- c) Find the root of the equation $x \log_{10} x = 1 \cdot 2$, correct to 2 decimal places by Bisection method. 6 + 4 + 5
- 10. a) Solve by Gauss elimination method :

$$x + 2y + 3z = 10$$

$$x + 3y - 2z = 7$$

2x - y + z = 5.

b) Evaluate $\int_{0}^{1} (4x - 3x^2) dx$ taking 10 intervals by

Trapezoidal rule and then find the absolute error.

c) Prove that $E = e^{hD}$, $D = \frac{d}{dx}$ and *E* is the shift operator. 7 + 5 + 3

11. a) Use Euler's method to find the solution of $\frac{dy}{dx} = x - y$ with y(0) = 1, h = 0.2 at x = 0.4.

b) Find the value of y (0.2) by 4th order Runge-Kutta method which is correct to *four* decimal places, where $\frac{dy}{dx} = y^2 - x^2, y(0) = 1$ taking h = 0.1. 7 + 8

CS/BCA/SEM-4 BNC 400/2011 12. a) Compute a root of the equation $x^2e^{-x/2} = 1$ in the interval [0, 2] by secant method correct to 3 decimal places.

b) Find the inverse of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$ by Gauss' method. 7+8

13. a) Solve the following equation by Jacobi's iteration method :

10x - 2y - z - w = 3- 2x + 10y - z - w = 15 - x - y + 10z - 2w = 27 - x - y - 2z + 10w = -9

b) Solve by *LV* factorization method :

2x - 3y + z = -1 x + 2y - 3z = -4 x - 4y + z = -67 + 8

4175

[Turn over