| Name .                    | Utech                    |
|---------------------------|--------------------------|
| Nume :                    |                          |
| Roll No. :                | Contraction and Contract |
| Invigilator's Signature : |                          |

# CS/B.OPTM/SEM-2/BO-201/2010 2010 PHYSICAL OPTICS — II

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

## **GROUP – A**

## (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following :  $10 \times 1 = 10$ 
  - i) Laser is a device to produce
    - a) a beam of white light
    - b) coherent light
    - c) microwaves
    - d) X-rays.
  - ii) Radii of Newton bright rings are
    - a) proportional to the wavelength of light
    - b) proportional to the square of the wavelength of light
    - c) proportional to the square root of the wavelength of light
    - d) inversely proportional to the wavelength of light.

2006

[ Turn over

- iii) To demonstrate the phenomenon of interference, we require
  - a) two sources which emit radiation of the same frequency
  - b) two sources which emit radiation of nearly the same frequency
  - c) two sources which emit radiation of the same frequency and have a definite phase relationship
  - d) two sources which emit radiation of different wavelengths.
- iv) In an S.H.M. during the motion
  - a) the kinetic energy is conserved
  - b) the potential energy is conserved
  - c) the total energy is conserved
  - d) none of these.
- v) In Fraunhofer diffraction the incident wavefront is
  - a) plane b) spherical
  - c) circular d) cylindrical.
- vi) Which one of the following waves cannot be polarized ?
  - a) *X*-rays b) Sound wave
  - c) UV rays d) Radio waves.
- vii) Metastable state is a state where atom exists for
  - a)  $10^{-3}$  sec b)  $10^{-8}$  sec
  - c)  $10^{-4}$  sec d)  $10^{-5}$  sec.

2

2006



### **GROUP – B**

#### (Short Answer Type Questions)

Answer any *three* of the following.  $3 \times 5 = 15$ 

- 2. Write a note on anti-reflection coating.
- 3. Write a short note on zone plate.
- 4. Distinguish between Fresnel and Fraunhofer diffractions.
- 5. Distinguish between
  - a) positive crystal and negative crystal

| b) interference and diffraction. 2 | $\frac{1}{2} + 2\frac{1}{2}$ |
|------------------------------------|------------------------------|
|------------------------------------|------------------------------|

2006

[ Turn over



 $3 \times 15 = 45$ Answer any three of the following.

| 6. | a) | What do you mean by laser ? What are the differen     | ices |
|----|----|-------------------------------------------------------|------|
|    |    | between laser light and normal light ?                | 1+ 3 |
|    | b) | Explain the basic principle involved in laser action. | 6    |
|    | c) | Explain how ruby laser is produced.                   | 5    |
| 7. | a) | What do you mean by interference ? Give the conditio  |      |
|    |    | for the sustained interference.                       | 3    |
|    | b) | Briefly discuss Young's double slit experiment to     | find |
|    |    | the interference expression & calculate the waveler   | ıgth |
|    |    | for which the constructive & destructive interferen   | ices |
|    |    | occur.                                                | 8    |

**GROUP – C** 

In Newton's ring experiment with a light containing two c) wavelengths  $\lambda_1$  = 589 nm &  $\lambda_2$  = 589.6 nm. Find the distance ( from the point of contact of planoconvex lens with glass plate ) at which the rings disappear. Take the radius of curvature of the curved surface as 1 m. 4

2006

4

b) Derive the expression for the bright and dark fringewidth found by the biprism.

2010

help

3

c) The acute angle of biprism of refractive index 1.5 is  $2^{\circ}$ .

A slit illuminated by a monochromatic light is placed 10 cm from the biprism. If the distance between the two dark fringes observed at a distance of 1 m from the

biprism is 0.18 mm, find the wavelength of light used. 4

d) What is the difference between the fringes observed in
Fresnal biprism experiment and Lloyd's single mirror
experiment?
2
2006
5
[Turn over]

9.



- b) Prove the laws of refraction for a plane surface from Huygens' wave theory.
- c) In Young's double slit experiment the slits are 0.589 nm apart and the interference is observed on a screen placed at a distance of 80 cm from the slit. It is found that the 10th bright ringe is at a distance of 9 mm from the dark fringe which is fourth from the fringe pattern. Find the wavelength of light used.

| 10. a) | Explain the following terms : | 2 + 2 + 3 + 2 + 3 |
|--------|-------------------------------|-------------------|
|--------|-------------------------------|-------------------|

6

- i) Double refraction
- ii) Optics axis
- iii) Positive and negative crystals
- iv) Principal section of crystal
- v) *E* rays and *O* rays.

2006

http://www.makaut.com/

CS/B.OPTM/SEM-2/BO 201/2010 b) Calculate the thickness of a half wave plate of quartz for a light of wavelength 500 Å ( the R.I.s for ordinary ray and extraordinary ray are 1.544 and 1.533 respectively ). 3

7

2006

[ Turn over