Name :	
Roll No. :	Andrew Of Exercising and Explanat
Invigilator's Signature :	

QUANTITATIVE METHODS-I

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \propto 1 = 10$
 - When three unbiased coins are tossed, probability of getting at least one head is
 - a) $\frac{1}{8}$ b) $\frac{3}{8}$ c) $\frac{7}{8}$ d) none of these.

ii) If in a determinant rows are changed into columns and vice versa, the value of the determinant

- a) remains the same b) becomes zero
- c) becomes one d) none of these.

110041

- iii) The *x*-coordinate of the point on the curve $y = x^2 2x + 3$ at which the tangent is perpendicular to the line x + 3y + 3 = 0 is
 - a) 7 / 2 b) 5 / 2
 - c) -5/2 d) none of these.
- iv) Which of the following functions is neither even nor odd ?
 - a) $\sin x$ b) $\cos x$ c) $\sin x + \cos x$ d) $x + \frac{1}{x}$.
- v) Consider the word TIME. Form all possible subsets by using letters of this word. Then the number of proper subsets is
 - a) 16 b) 15
 - c) 12 d) 14.
- vi) The no. of ways in which the letters of the word HOLIDAY can be arranged so that the vowels remain together is
 - a) 5040 b) 144
 - c) 720 d) 4320.

110041

CS/MBA(OLD)/SEM-1 (FT & PT)/MB-105/2005-10
vii) Suppose the marginal cost function is given by

$$MC(q) = 4e^{2q}$$
. The fixed cost in 10. The total cost
 $TC(q)$ is
a) $2e^{2q} + 8$ b) $2e^{2q} + 10$
c) $4e^{2q} + 8$ d) $4e^{2q} + 10$.
viii) The functions f and g are defined by $f(x) = 2x$ and
 $g(x) = 1 / x, x \neq 0$. The value of $fg(x)$ is
a) $x / 2b$ $2 / x$
c) $2x^2$ d) $x^2 / 2$.
ix) If $P(A) = \frac{1}{4}$, $P(B) = \frac{3}{4}$ and $P(A \cap B) = \frac{3}{16}$, then
the events A and B are
a) independent b) mutually exclusive
c) eqally likely d) none of these.
x) If $A = \begin{pmatrix} a & b \\ c & a \end{pmatrix}$ and $ad - bc \neq 0$, then A^{-1} equals
a) $\begin{pmatrix} d & b \\ c & a \end{pmatrix}$
b) $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
c) $\frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
d) $\frac{1}{ad - bc} \begin{pmatrix} d & b \\ c & a \end{pmatrix}$.

- xi) If $y = x^2 e^{mx}$, then $\frac{dy}{dx}$ equals
 - a) $x^2 + e^{mx}$
 - b) $mx^2 + e^{mx}$
 - c) $(mx + 2) e^{mx} .x$
 - d) $2xe^{mx}$.
- xii) The centre of the circle passing through the origin and cutting off intercepts *a* and *b* on the *X* and *Y* axes is
 - a) $\left(\frac{a}{2}, \frac{b}{2}\right)$ b) $\left(\frac{-a}{2}, \frac{-b}{2}\right)$
 - c) (a, b)
 - d) (a/2, -b/2).

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \propto 5 = 15$

2. Evaluate the following limit :

$$\lim_{x \neq 0} \frac{\sqrt{x+8} - \sqrt{8x+1}}{\sqrt{5-x} - \sqrt{7x-3}}$$
3. If $x^m y^n = (x+y)^{m+n}$, show that $\frac{dy}{dx} = \frac{y}{x}$
4. Evaluate : $\int e^{mx} \cos x \, dx$.

110041

- 5. A box contains 20 tickets of identical appearance, the tickets being numbered 1, 2, 3, 20. If 3 tickets are chosen at random, what is the probability that the numbers on the tickets drawn are in arithmetic progression ?
- 6. The line y = mx and the curve $y = x^2 2x$ intersect at the origin *O* and meet again at a point *A*. If *P* is the mid-point of *OA*, find the equation of the locus of *P* as *m* varies.

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \propto 15 = 45$

- 7. a) Show that the maximum value of the function $f(x) = x + \frac{1}{x}$ is less than its minimum value. Sketch the curve of this function, indicating the asymptotes, if any.
 - b) The total cost function of a firm is given by

 $C(x) = \frac{1}{3}x^3 - 5x^2 + 28x + 10$, where *x* denotes the quantity of output. A tax at the rate of Rs. 2 per unit of output is imposed and the producer adds it to his costs. The market demand function is given by P = 2350 - 5x, where *P* denotes the unit price. Find the profit maximizing output and the corresponding price.8 + 7

- 8. a) Find the equation of the straight line that passes through the interesection of the lines 3x + 4y = 17 and 4x 2y = 8 and which is perpendicular to the line 7x + 5y = 12.
 - b) Find the equation of the circle which passes through the points (3, 4) and (3 6) and which has its centre on the straight line 2x + 3y = 3.
 - c) Show that the coordinates of the vertices of an equilateral traingle cannot be all rational. 5 + 5 + 5

110041

- 9. a) Calculate the average value of f(x) = 3 + |x| on the interval [-2, 4].
 - b) Find the area bounded by the parabolas $y^2 = 4x$, $x^2 = 4y$ and the *x*-axis.
 - c) A function f(x) is defined as follows :

$$f(x) = \frac{3}{2} - x, \text{ when } 0 < x < 1/2.$$
$$= \frac{1}{2}, \text{ when } x = 1/2$$
$$= 1/2 - x, \text{ when } 1/2 < x < 1.$$

Examine the continuity of the function at x = 1/2.

5 + 6 + 4

Utech

10. a) Find the value of *x*, in terms of *a*, *b*, *c* given that

 $\begin{bmatrix} x+a & b & c \\ c & x+b & a \\ a & b & x+c \end{bmatrix} = 0$

b) State Cauchy's root test. Prove that the series

$$\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \dots + \left(\frac{n}{2n+1}\right)^n + \dots \text{ converges.}$$
c) If $A = \begin{bmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix}$, express A as a sum of two

matrices such that one is symmetric and the other skew-symmetric. 5+6+4

110041

b) A motorist plans a journey and event X is arrival at his destination in less than 3 hrs. He estinates the probability of dry weather, rain or snow to be 1/3, 1/2 and 1/6 respectively. The probabilities of event X in these conditions are 3/4, 2/5 and 1/10 respectively. What is the probability that the motorist completes his journey in 3 hours ? What is the probability that if he fails to arrive in less than 3 hours, there was a fall of snow ?

c) Evaluate:
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx. \qquad 6+6+3$$

110041