MCA-101

COMPUTER ORGANIZATION AND ARCHITECTURE

Time Allotted: 3 Hours Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

		GRO (Multiple Choice		tions)	
1.		Answer all questions.			10×1 = 10
	(i)	A full subtractor can be designed with a	a full adder l	oy	
		(A) only changing the circuit			
		(B) adding a NOT with the SUM input			
		(C) adding a NOT with CARRY input			
		(D) none of these		(*) (*)	
. ((ii)	How many bits are needed to represent	a digit in he	xadecimal notation	n?
		(A) 8	(B) 16		
		(C) 4	(D) 2		
(iii)	Conversion of (FAFAFA) ₁₆ into octal f	orm is		
		(A) 76575372	(B) 765753	370	
		(C) 7675374	(D) 727272	272	
(iv)	1 nibble is equal to			
Ì	· ´.	(A) 2 bits	(B) 8 bits		
		(C) 4 bits	(D) 16 bits		

1016 [Turn over]

CS/MCA/Odd/Sem-1st/MCA-101/2014-15

(A) direct

(C) register

	Flop?				
	(A) $S = 0$, $R = 0$		(B) $S = 1$, $R =$	<u>-</u> 1	
	(C) $S = 0, R = 1$		(D) $S = 1$, $R = 1$	= 0	
(vii)	Gray code for binary 101	1			
	(A) 1101		(B) 1110		
	(C) 1001		(D) 0111		
(viii)	How many address bits are required for a 1024 × 8 memory unit?				
	(A) 2		(B) 8		
	(C) 10		(D) 12		٠
(ix)	The basic principle of a Von-Neumann Computer is				
	(A) storing both data and program in same memory				
	(B) storing both data and program in separate memory				
	(C) storing only data				
	(D) storing only program				
(x)	Which of the following microprocessor?	g operation is	not directly	possible in	8085
	(A) MUL		(B) DIV		
	(C) CMA		(D) both (A)	and (B)	
				•	

(v) Which of the following addressing mode is used in 'PUSH B'?

(vi) Which of the following input combinations is not allowed in SR Flip-

(B) immediate

(D) register-immediate

GROUP B (Short Answer Type Questions)

	Answer any three questions.	$3\times5=15$
2.	With truth table and Boolean function, design a half adder circuit with minimum number of 2-input NOR gates only.	5
3.	Differentiate between hardware control and microprogrammed control unit.	5
4.	Convert a JK Flip-flop into a D Flip-Flop. You can use additional circuitry, if required.	5
5. (a)	Add the following numbers using 2's complement method. +30 and -22	4+1
(b)	What is the 2's complement of $(1000\ 1111\ 0001\ 1110)_2$?	
6.	Explain Associative memory.	5
	GROUP C (Long Answer Type Questions)	
	Answer any three questions.	3×15 = 45
7. (a)	Construct a full Subtracter with half adders and an additional gate.	6
(b)	Construct XOR using NAND.	3
(c)	What is truth table? Why it called so?	3
(d)	Design the circuit $AB+BC(B+C)$.	3
8. (a)	Write down the De Morgan's Theorem?	3
(b)	Simplify using Boolean algebra	6
	(i) (A + (BC)') '	
	(ii) $A'BC + AB'C + ABC' + ABC$	

3

[Turn over]

1016

CS/MCA/Odd/Sem-1st/MCA-101/2014-15

(c)	Simplify using K map (i) (A + AB)	6
	(ii) A'B'C + A'BC + AB'C + ABC	•
9.(a)	What is bus speed?	2
(b)	What is PLA?	2
(c)	Describe basic architecture of a digital computer.	6
(d)	Design the circuit using multiplexer $F(A,B,C)=\sum (0,1,3,4,8,9,15)$.	5
10.(a)	What is micro controller?	3
(b)	Write a 8085 instruction code for swap two value.	6
(c)	Write a 8085 instruction code for add three number with 200.	6
11.	Write short notes on any three of the following:	3×5
(a)	D flip flop	
(b)	RAM and ROM	
(c)	ALU	
(d)	binary comparator	
(e)	decoder and encoder	
(f)	circuit design with multiplexer	,

1016