

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: M(MCA)-101

DISCRETE MATHEMATICAL STRUCTURE

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Solution of the recurrence relation $a_n = 2a_{n-1} + 1$ with $a_0 = 0$ is
 - a) $1 2^n$

b) $2^{n}-2$

c) $2^{n-1}-1$

- d) $2^n 1$.
- ii) If the truth value of p and q are T and F respectively, then the truth value of $\sim p \rightarrow \sim q$ is
 - a) 1

- b) *F*
- c) both T and F
- d) none of these.

1/10216

[Turn over

- iii) The mapping $f: N \to N$ defined by $f(n) = \left\lceil \frac{n+1}{2} \right\rceil$, $n \in N$ is
 - a) injective
- b) surjective
- c) bijective
- d) none of these.
- iv) Choose the correct statement:
 - a) Path is an open walk
 - b) Every walk is trail
 - c) Every trail is path
 - d) A vertex cannot appear twice in a walk.
- v) The type-2 Grammar in relation to the automata theory is known as
 - a) context sensitive grammar
 - b) regular grammar
 - c) context free grammar
 - d) none of these.
- vi) How many ways can the letters of the word 'MADAM' be arranged?
 - a) 30

b) 24

c) 120

- d) 60.
- vii) Which one is a tautology?
 - a) $p \vee q$

- b) $pv \sim q$
- c) $pv \sim p$

 $\mathbf{d}) \quad p \vee F$

1/10216

viii) The type of the grammar, which consists of which of the following productions?

$$s \rightarrow aA$$
, $A \rightarrow aAB$, $B \rightarrow b$, $A \rightarrow a$

- a) Type -0
- b) Type-1

c) Type-2

d) Type-3.

ix) The generating function of the sequence $\{0, 0, 1, 1, 1, 1, 1, \dots \}$ is

- a) $x^2(1+x)^{-1}$
- b) $x(1+x)^{-2}$
- c) $x(1-x)^{-1}$
- d) $x^2(1-x)^{-1}$.

x) If a tree has 10 vertices then number of its edges is

a) 8

b) 11

c) 10

d) none of these.

xi) Minimal spanning tree in a graph is

a) unique

- b) not unique
- c) more than three
- d) exactly three.

xii) Let L be a language given by $L = \left\{ a^n b^n : n \ge 0 \right\}$ then L^2 is equal to

a)
$$\left\{ a^n b^n a^m b^m : n \ge 0 \ m \ge 0 \right\}$$

$$\mathbf{b}) \quad \left\{ a^n b^n : n \ge 0 \right\}.$$

c)
$$\left\{a^nb^na^mb^m: n \ge 0\right\}$$

d) none of these.

1/10216

.

[Turn over

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Show that $f: R \to R$ defined by $f(x) = x^3 2$ is bijective. Find f^{-1} .
- · 3. Prove by mathematical induction:

$$3 + 33 + 333 + \dots + 33 \dots 3 = \frac{10^{n+1} - 9n - 10}{27}$$

4. Solve the recurrence relation

$$a_n - 6a_{n-1} + 8a_{n-2} = n - 1, \ n \ge 2, \ a_0 = 1, \ a_1 = 3.$$

5. A relation on the set $A = \{4, 6, 8, 10\}$ whose matrix representation is given by

$$\boldsymbol{M}_{R} = \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

Find the transitive closure of *R*.

6. Show that in a Binary tree with *n* vertices has $\frac{n+1}{2}$ pendant vertices.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) What is complemented lattice? Give an example.
 - b) Show that the set of all positive divisors of 72 forms a poset under the relation \leq defined as $a \leq b$ if a is a divisor of b. Draw its Hasse diagram.

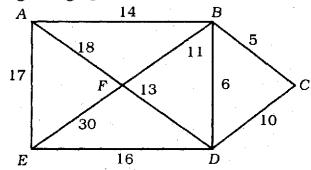
1/10216

- c) Let $\sum = (a, b)$, write the grammar for the language $L = \left\{ a^n b a^n : n \ge 0 \right\}$. 4 + 6 + 5
- 8. a) Obtain the DNF of $(P \land Q) \lor [\neg (P \rightarrow Q)]$.
 - b) Convert the following arguments in the predicates and check whether their conclusions are valid:

All doctors are brilliant.

All brilliant are laborious.

Rajesh is not labourious.

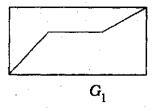

Therefore, Rajesh is not doctor.

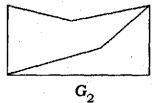
c) Construct a DFA from the NFA:

State	Input $a = 0$	Input $a = 1$
Α	В	B, C
В	A, C	
С	A	B, C

$$5 + 5 + 5$$

9. a) Define minimal spanning tree of a graph with an example. Apply Prim's Algorithm to the following weighted graph and find the minimum weight.

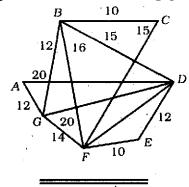



1/10216

5

[Turn over

- b) How many solutions does the equation $x_1 + x_2 + x_3 + x_4 = 30$ have if $x_1 \ge 2$, $x_2 \ge 4$, $x_3 \ge 5$ and $x_4 \ge 6$ and all are integers.
- c) Test whether the following two graphs G_1 and G_2 are isomorphic to each other or not.



8 + 4 + 3

- 10. a) Use mathematical induction to prove that $n^3 + 2n$ is divisible by 3.
 - b) Show that the mapping $f: R \{\sqrt{2}\} \to R$ defined by $f(x) = \frac{x}{x^2 2}, \quad x \neq \sqrt{2} \text{ is surjetive but not injective.}$
 - c) Construct a minimum state automata equivalent to the finite automata given below:

Present state	Next state	
	Input $a = 0$	Input $a = 1$
-> q ₀	$q_{ m l}$	q_5
$oldsymbol{q}_1$	q_5	$q^{}_2$
	q_0	$q^{}_2$
q_3	q_2	$q_{_4}$
q_4	q_5	q_5
q_5	$q_2^{}$	$q_{_4}$

- 11. a) Prove that if there is one and only path between every pair of vertices in a graph G, then G is a tree.
 - b) If $U = \{ 2, 3, 4, \dots, 8 \}$ and the two fuzzy sets are $F_1 = \{ (2, 0.7), (5, 0.7), (6, 1) \}$, $F_2 = \{ (2, 0.6), (5, 0.8), (7, 1), (8, 0.1) \}.$ Find \overline{B} , $\overline{A} \cap \overline{B}$, $A \cup B$.
 - c) Apply Kruskal's Algorithm to find the minimum spanning tree of the following graph:

