MM-101

DISCRETE MATHEMATICAL STRUCTURE

Time Allotted: 3 Hours Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

		UP A e Type Questions)	
1.	Answer any ten questions.			$10 \times 1 = 10$
(i)	The number of arrangements of 25 objects we second kind, 3 are of the third kind and 4 are of			
	(A) $\frac{25!}{7! 2! 3! 4!}$ (B) $\frac{25!}{7! 2!}$	(C) $\frac{25!}{3!4!}$	(D) none of these	
(ii)	If A, B and C are any three arbitrary sets, then A	$A - (B \cap C)$ is		
	$(A)(A-B)\cup(A-C)$	(B) $(A - B) \cap (A$	– C)	4
. '	$(C)(A-B)\cap (C-A)$	(D) $(B-A) \cup (A$	– C)	
(iii)	If A and B are two fuzzy sets given by $A = \{(1, 0.3), (3, 0.2), (5, 0.5), (7, 0.7)\}$ then	, 0.1), (3, 0.4), (5,	(0.2), (7, 0.8) and $B =$	
•	(A) $A \cup B = \{(1, 0.3), (3, 0.4), (5, 0.2), (7, 0.8)\}$			•
	(B) $A \cup B = \{(1, 0.3), (3, 0.4), (5, 0.5), (7, 0.8)\}$	en e		
	(C) A = {(1, 0.1), (3, 0.4), (5, 0.5), (7, 0.8)} (D) none of these	en e		·
(iv)	How many ways can the letters of the word 'LE	ADER' be arranged	!? .	
	(A) 72 (B) 144	(C) 360	(D) none of these	Ÿ
(v)	The type of the grammar, which consists of the $s \rightarrow aA$, $A \rightarrow aAB$, $B \rightarrow b$, $A \rightarrow a$ is	following production	ns	
	(A) Type-0 (B) Type-1	(C) Type-2	(D) Type-3	
(vi)	Let L be a language given by $L = \{a^nb^n : n \ge 0\},\$	then L ² is equal to	3	
٠.	(A) $\{a^nb^na^mb^m : n \ge 0, m \ge 0\}$	$(B) \{a^nb^n : n \ge 0\}$		
	(C) $\{a^nb^na^nb^n: n \geq 0\}$	(D) none of these		
				•

CS/MCA/odd/Sem-1st/MM-101/2014-15

- (vii) If the function $f: R \to R$ defined by f(x) = 3x 4 if x > 0 and f(x) = 2 3x if $x \le 0$ then $f^{-1}(2) =$
 - (A)(2)

- (B)(0,2)
- (C)(2,-2)
- (D) none of these
- (viii) The solution of the recurrence relation $a_r 7a_{r-1} + 10a_{r-2} = 0$ given $a_0 = 0$, $a_1 = 3$ is
 - (A) $5^{-r} 2^{r}$
- (B) $5^r + 2^r$
- (C) $5^{r} 2^{r}$
- (D) none of these

(ix) Haase diagram is given below:

This is a

- (A) Poset
- (B) Toset
- (C) Lattice
- (D) none of these

- (x) Out of the following the singleton set is
 - (A) $A = \{x : 3x 2 = 0, x \in Q\}$
- (B) $B = \{x : x^2 1 = 0, x \in R\}$
- (C) $C = \{x : 30x 59 = 0, x \in \mathbb{N}\}\$
- (D) $D = \{x : x^2 1 = 0, x \in Z\}$

where O, R, N, Z is the set of all rational number, real number, natural number and integers respectively.

- (xi) Out of the following statements the formula for tautology is
 - $(A) (p \lor q) \rightarrow q$
- (B) $p \vee (q \rightarrow p)$
- (C) $p \lor (p \to q)$ (D) $p \to (p \to q)$
- (xii) A tree (acyclic connected graph) of n vertices has exactly
 - (A) n-1
- (B) n
- (C) $\frac{n-1}{2}$ (D) $\frac{n+1}{2}$

GROUP B (Short Answer Type Questions)

Answer any three questions.

 $3 \times 5 = 15$

· 2. Draw the graphs for the following incidence matrix I and adjacency matrix A.

$$I = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

1214

CS/MCA/odd/Sem-1st/MM-101/2014-15

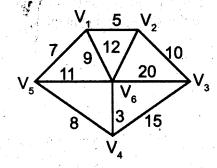
- 3. Prove by mathematical induction, if card(A) = n then $card(P(A)) = 2^n$.
- 4. Solve the following recurrence relation using generating function $a_n 6a_{n-1} + 8a_{n-2} = n-1$, $n \ge 2$, $a_0 = 1$, $a_1 = 3$
- 5. Draw the Hasse diagram for the divisibility relation on set $A = \{2, 3, 6, 12, 24, 36\}$ also find maximal and minimal elements.
- 6. Show that a Binary tree with *n* vertices has $\frac{n+1}{2}$ pendant vertices.

GROUP C (Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. (a) Prove that a collection of sets closed under union and intersection is a lattice.
 - (b) Define a poset. Show that $(P(S), \subseteq)$ is a poset where P(S) denotes the power set of the set $S' = \{x, y, z\}$. Also draw the Hasse diagram for this poset.
 - (c) Using Prim's algorithm, find a spanning tree with minimum weight from the graph shown. Also calculate total weight of spanning tree.



- 8. (a) 6 boys and 6 girls are to be seated in a row. How many ways can they be seated if
 - (i) all boys are to be seated together and all girls are to be seated together.
 - (ii) no two girls should be seated together.
 - (b) Let D_{20} be the set of all positive divisors of 40. Find whether D_{20} is a Poset with respect to the relation P where aPb means a divides b. Draw the Hasse diagram of the Poset (D₂₀, P). Find the Maximal, Minimal element of D_{20} .
 - (c) Show by truth table that the following statement formula is a Tautology:

$$((p \to q) \land (q \to r) \to (p \to r)).$$

9. (a) Draw the three distinct connected graphs which are not isomorphic from the degree 4+6+5 sequence {1, 3, 3, 4, 5}.

1214

3

[Turn over]

6+5+4

CS/MCA/odd/Sem-1st/MM-101/2014-15

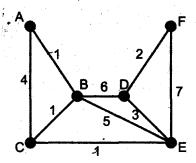
(b) Construct a Moore machine which is equivalent to the following Mealy machine

Present state	Input 0		Input 1	
	Next state	output	Next State	output
Α	- B	х	C	х
В	A	у	С	у
С	В	х	Α	y

(c) Convert the $M = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, q_2 \rangle$ to DFA, δ is given below:

Present State	Input 0	Input 1	
	Next State	Next State	
$\rightarrow q_o$	q_1	q_0, q_2	
q_1	q_0	q_2	
q_2	q_2 .	q_1	

10.(a) By Dijkstra's algorithm find the shortest path and the length of the shortest path from the vertex A to F in the following graph:



- (b) If $U = \{1,2,3,...,10\}$, $A = \{(1,0.7), (3,0.9), (6,0.8), (7,1), (9,0.1), (10,0.6)\}$ $B = \{(1,0.2), (2,0.6), (4,0.6), (5,0.3), (6,0.2), (8,0.1)\}$, find \overline{A} , $A \cap \overline{B}$, $A \cup B$
- (c) Draw the transition diagram of an automaton M that accepts all even numbers.
- 11.(a) Let f(x) = x + 2, g(x) = x 2 and h(x) = 3x for $x \in R$, the set of real numbers. Then find $g \circ f$, $f \circ g$, $f \circ h$, $h \circ g$, $f \circ g \circ h$.
 - (b) Write short notes on any two of the following:
 - (i) Hamiltonian Graph
 - (ii) CNF
 - (iii) Planar Graph
 - (iv) Mealy Machine
 - (c) Obtain a Grammar which generates the language $L = \{a^n b^{n+1} : n \ge 0\}$

.