

## ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2006 COMPUTER ORGANIZATION AND ARCHITECTURE SEMESTER - 1

Time: 3 Hours]

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. Answer any five from the following:

 $5 \times 2 = 10$ 

- i) What are the different flags in 8085 microprocessor?
- ii) Why is multiplexer called "data selector"?
- iii) What is cache memory?
- iv) Add the following numbers using 2's complement method: + 49 and 37.
- v) What is meant by Harvard Architecture?
- vi) What is the purpose of stack in microprocessor?
- vii) Define T state, machine cycle and instruction cycle.
- viii) What is hit ratio and miss penalty?
- 2. a)  $f(A, B, C, D) = \sum m(0, 2, 3, 5, 6, 7, 8, 9) + \sum d(10, 11, 12, 13, 14, 15)$ . Realize the minimised function using only NAND gates.
  - b) A digital computer has a common bus system for K registers, each of n bit capacity. The bus is constructed with multiplexers.
    - i) What size of multiplexers is needed?
      - ii) How many multiplexers are there in the bus?
  - c) Draw a comparison between RISC and CISC machines.

5 + 5 + 5 = 15

## CS/MCA/SEM-1/MCA-101/06

4



- 3. a) Give the block diagram of 8085 microprocessor clearly mentioning different functional units.
  - b) Draw the timing diagram of the OPCODE fetch machine cycle.
  - c) Explain the function of the ALE signal in 8085 microprocessor.
  - d) What is the duration of a T-state in 8085 microprocessor?

6 + 6 + 2 + 1

- 4. a) Show how a full adder can be converted to a full subtractor with the addition of just one inverter with the full adder circuit.
  - b) Design a decimal to BCD encoder.

8 + 7

- a) Design a BCD ripple counter and explain its operation with timing diagram.
- b) Explain Booth's multiplication algorithm with suitable example.

8 + 7

- a) With a suitable diagram explain the concept of microprogramming.
  - b) What are the different stages of instruction pipelining?
  - c) Define Speedup, Efficiency and Throughput of a pipeline.
  - d) What is pipeline staling?

7 + 2 + 4 + 2

- 7. a) What is the difference between a latch and edge triggered flip-flop?
  - b) Draw the circuit diagram of a master-slave JK flip-flop using all NAND gates and explain the circuit operation.
  - c) Convert a D flip-flop to a JK flip-flop using additional gates.

3 + 7 + 5

8. Write short notes on any three of the following:

 $3\times 5=15$ 

a) DMA

5.

6.

- b) Vector Processing
- c) Interrupt lines in 8085 microprocessor
- d) von Neumann architecture
- e) Virtual memory.