

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 COMPUTER ORGANIZATION & ARCHITECTURE

SEMESTER - 1

Time: 3 Hours]		[Full Marks : 70
Inne . O Hours		

GROUP - A

			(Multiple (Choice T	уре 9	questions)
1.	Cho	ose th	: 10 × 1 = 10			
	i)	1 nibble is equal to				
		a)	4 bits		b)	8 bits
		c)	12 bits		d)	16 bits.
	ii)	364	(8) =(1	0)	•.	
		a)	222		b)	102
ê		c)	244		d)	230.
	iii)	iii) 6B9 (Hexadecimal) = (Binary)				
		a)	11010111001		b)	01010111010
	•	c)	11110011001		d)	101010101010.
	iv)	Valu	the of $(a + b'c')'$. $(ab' +$	abc) =	•••••	
		a)	zero		b)	one
		c)	а		d)	ab.
	v)	Inte	r-record gap is related to	o which	one o	the following storage devices?
•		a)	Floppy Disk	•	b)	Hard Disk
		c)	CD-ROM		d)	Magnetic Tape.
	vi) Which of the following registers holds an instructon until it is deco					
		a)	Index Register		b)	Memory Address Register
		c)	Instruction Register		d)	Data Register.

11019 (5/12)

CA/SE	M-1/N	MCA-101/08/(09)	4		
vii)	Gat	ed D latch is called	latc	h.	
	a)	Transport latch	b)	Traverse latch	
	c)	Transparent latch	d)	Nested latch.	
viii)		bulk storage, which one		owing storage devices is n	nost suitable
	a)	Hard Disk	b)	Magnetic Tape	
	c)	CD-ROM	d)	DVD.	
ix)	INT	R is an interrupt signal o	of	priority.	
	a)	highest	b)	lowest	
	c)	medium	d)	same.	
x)	Wh	ich one of the following op	erations is	not performed by ALU?	
	a)	Clear	b)	Floating point calculation	1
	c)	Logical OR	d)	Logical AND.	, .
•			GROUP - B		
		(Short Ans	wer Type Q	uestions)	
		Answer any	three of the	e following.	$3 \times 5 = 15$

- Design a half adder circuit using minimum number of 2-input NOR gates only. Write 2. down the truth table and Boolean function also.
- Convert a JK flip-flop to a D flip-flop. You can use additional circuitry, if required. 3.
- Construct a 5×32 decoder with the help of 2×4 decoders. Show the block diagram 4. only.
- Write short notes on any one of the following: 5.
 - i) Universal gate
 - Master-Slave JK flip-flop ii)
 - iii) Cache Memory.
- Obtain the POS form of F (A, B, C, D) = $AB\overline{C} + A\overline{D} + CD$. 6.

11019 (5/12)

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. a) Prove that $(a + b' + c')' \cdot (ab' + abc) = 0$ in Boolean algebra.
 - b) Why does 11 come before 10 in the Karnaugh map?
 - c) How many input line(s) and selection line(s) must be present in a demultiplexer that has 32 possible output lines?
 - d) Why is a gated D latch called 'transparent' latch?
 - e) Design a combinational circuit using different logic gates that can convert BCD code to its corresponding Excess-3 code. 2 + 2 + 1 + 2 + 8 = 15
- 8. What is pipeline architecture? What is speed-up, efficiency and throughput of a pipe-lined architecture with reference to non-pipelined architecture. What is locality of reference? Write down the various ways in addressing cache. Write down the difference between direct, indirect and implicit address instructions.

$$2 + 3 + 2 + 5 + 3 = 15$$

Design a sequential circuit using JK flip-flop which realizes the following scale diagram:

- b) Draw a schematic diagram of Master-Slave JK flip-flop.
- c) Find out the Q value of R if $(125)_R = (203)_5$.

8 + 4 + 3 = 15

11019 (5/12)

6

- 10. a) Show how two 4: 1 MUX can be connected to provide an 8:1 MUX.
 - b) Design a mod 8 synchronous counter.
 - c) What is vector processing?

5 + 5 + 5 = 15

- 11. a) Design 16×4 bit RAM using 4×2 bit RAM IC modules.
 - b) What is the difference between memory mapped I/O and I/O mapped I/O?
 - c) Briefly explain arithmetic & logic instructions.

6 + 4 + 5 = 15

Write short notes on any three of the following:

 $3 \times 5 = 15$

- a) Self-complementing property of Excess-3 code
- b) DMA controller

12.

- c) von Neumann architecture
- d) Addressing modes.

END