	UNVERTITE OF TECHNOLOGY
	000
	Utech
Name :	
Roll No. :	An Annual With Standing and Conference
Invigilator's Signature :	

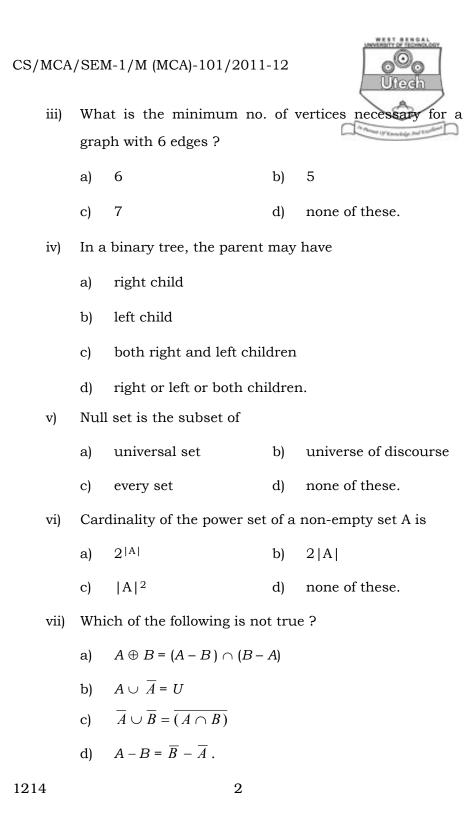
CS/MCA/SEM-1/M (MCA)-101/2011-12

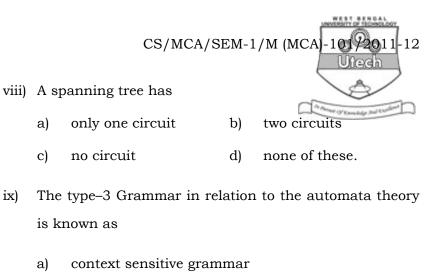
2011 DISCRETE MATHEMATICAL STRUCTURE

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.


GROUP – A (Multiple Choice Type Questions)


1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- The number of arrangements of 25 objects where 7 are of the first kind, 12 are of the second kind, 3 are of the third kind and 4 are of the fourth kind is given by
 - a) (25!)/(7!2!3!4!) b) (25!)/(7!2!)
 - c) (25!)/(3!4!) d) none of these.
- ii) Which one is a singleton set ?
 - a) $\{0, 1\}$ b) $\{1, 11, 111\}$
 - c) {0} d) none of these.

1214

- b) regular grammar
- c) context free grammar
- d) none of these.
- x) If p: 'Anil is rich' & q: 'Kanchan is poor' then the symbolic form for the statement 'Either Anil or Kanchan is rich' is
 - a) $p \lor q$ b) $p \lor \sim q$
 - c) $\sim p \lor q$ d) $\sim (p \land q)$.
- xi) How many arrangements are possible by the word "LETTER" ?
 - a) 720 b) 360
 - c) 60 d) 180.

1214

CS/MCA/SEM-1/M (MCA)-101/2011-12

xii) A pendant vertex has degree

c)

3

- a) 1 b)
 - d) none of these.

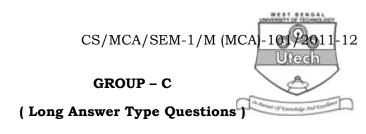
GROUP - B

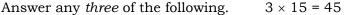
(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2

- Let f (x) = x + 2, g (x) = x 2 and h (x) = 3x for x ∈ R, the set of real numbers. Then find g o f, f o f, f o h, h o g, f o g o h.
- 3. Define distributive lattice. Prove that in a distributive lattice $(a \land b) \lor (b \land c) \lor (c \land a) = (a \lor b) \land (b \lor c) \land (c \lor a)$
- 4. Let G be a graph with *n* vertices and e edges. Prove that G has a vertex of degree *m* such that $m \ge \frac{2e}{n}$.

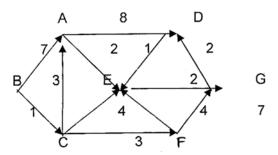

4


5. By mathematical induction prove that

 $3^{2n+1} + (-1)^n 2 = 0 \pmod{5}$.

6. Define a planar graph. Show that K_5 is non-planar.

1214



- 7. a) Obtain equivalent disjunctive normal form of $\sim G \wedge (H \leftrightarrow G)$.
 - b) Solve the following recurrence relation using generating function :

 $a_n - 2a_{n-1} + a_{n-2} = 2^{n-2}$ for $n \ge 2$ and $a_0 = 1$, $a_1 = 5$.

- c) Determine whether the posets ({ 1, 2, 3, 4, 5 },|) and ({ 1, 2, 4, 8, 16 },|) are lattices. Here the relation ' | ' implies "divides".
- 8. a)

Find the shortest distance between B and G applying Dijkstra's Algorithm.

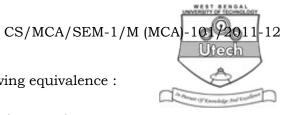
- b) Give an example of a relation on A (described by you) which is symmetric and transitive but not reflexive (with justification).
- c) Show that $(p \lor q)^{\wedge} (\sim p^{\wedge} \sim q)$ is a contradiction.

5

1214

CS/MCA/SEM-1/M (MCA)-101/2011-12

- 9. a) Prove that if there is one and only path between every pair of vertices in a graph G, then G is a tree.
 - b) Construct the truth table for :


 $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)).$

- c) If P (S) is the power set of a set S and \cup and \cap are taken as the join and meet, prove that (P(S), \subseteq) is a lattice.
- 10. a) Use mathematical induction to prove that $n^3 + 2n$ is divisible by 3.
 - b) What do you mean by disjunction and conjunction ?
 - Machine : Present Next state Output Input a=0 Input a=1 state 0 \mathbf{q}_0 \mathbf{q}_3 \mathbf{q}_1 1 \mathbf{q}_1 \mathbf{q}_1 \mathbf{q}_2 0 q_2 q_2 q_3 q_3 q_3 \mathbf{q}_0 0

c) Convert the given Moore Machine to its equivalent Mealy

1214

6

11. a) Prove the following equivalence :

b)

 $p \leftrightarrow (p \land q) \lor (p \land \neg q)$

Construct a DFA from the NFA :

Input (1) Output Input (0) State В B,C 0 А 0 A, C ----В С 1 А В, С

7

c) Write a short note on Fuzzy sets.

1214