Name :	- Colesan
Roll No. :	A Annual Westminister and Carlinson
Invigilator's Signature :	

CS/MCA/SEM-1/M(MCA)-101/2012-13

2012

DISCRETE MATHEMATICAL STRUCTURES

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

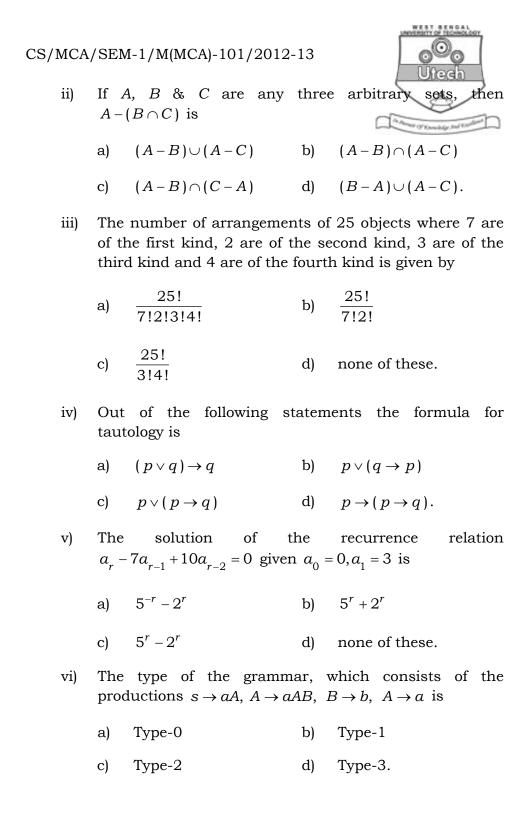
1. Choose the correct alternatives for any *ten* of the following :

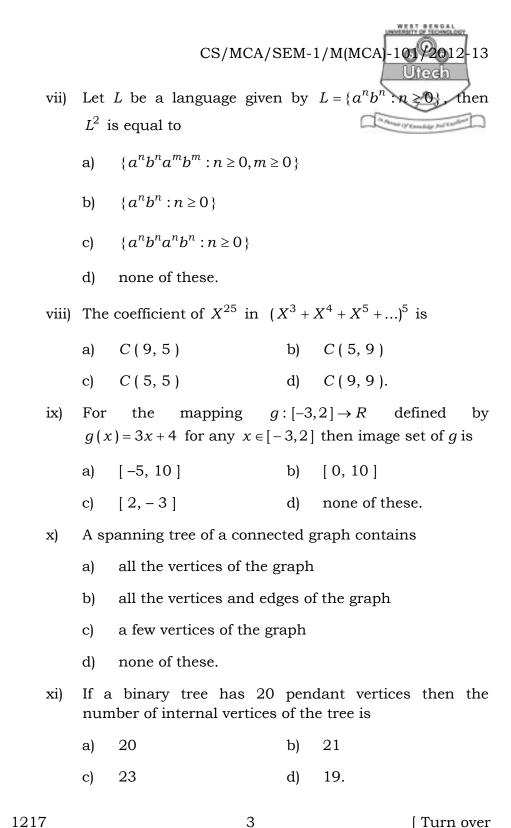
 $10 \times 1 = 10$

- i) Out of the following the singleton set is
 - a) $A = \{ x : 3x 2 = 0, x \in Q \}$
 - b) $B = \{x : x^2 1 = 0, x \in R\}$
 - c) $C = \{ x : 30x 59 = 0, x \in N \}$
 - d) $D = \{ x : x^2 1 = 0, x \in Z \}$

where *Q*, *R*, *N*, *Z* is the set of all rational number, real number, natural number and integers respectively.

[Turn over



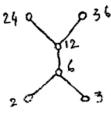


1217

[Turn over

CS/MCA/SEM-1/M(MCA)-101/2012-13

xii) Haase diagram is given below :



This is a

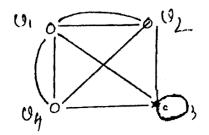
a)	Poset	b)	Toset

c) Lattice d) none of these.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$ 2. Define adjacency matrix of a simple graph G = (V, E). Write down the adjacency matrix for the following undirected graph :



- 3. By using Principle of Mathematical Induction, prove that $4^{2n+1}+3^{n+2}$ is an integer multiple of 13 for all positive integers *n*.
- 4. Let $A = \{x \in R : x \neq 2\}$ & $B = \{x \in R : x \neq 1\}$, and let the two functions $f : A \to B$ & $g : B \to A$ are defined by $f(x) = \frac{x}{x-2}, \forall x \in A \text{ and } g(x) = \frac{2x}{x-1}, \forall x \in B$, then find f_og . Are the two functions f and g invertible ? 2 + 3

- 5. Over the alphabet $\sum = \{a, b\}$ design a DFA which accepts the language $L = \{w : w \text{ has both an even number of } a$'s and an even number of b's.
- 6. Find an explicit formula for the sequence defined by $a_n = a_{n-1} + 4 \quad \forall n \ge 2 \text{ with } a_1 = 2...$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$ 7. a) Determine the intersection of the following two fuzzy

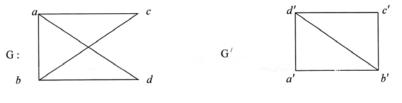
$$A = \left\{ \frac{4}{01}, \frac{6}{0 \cdot 5}, \frac{8}{0 \cdot 6}, \frac{10}{0 \cdot 7} \right\} \text{ and}$$
$$B = \left\{ \frac{0}{0 \cdot 4}, \frac{2}{0 \cdot 6}, \frac{4}{1}, \frac{6}{1}, \frac{8}{0 \cdot 6}, \frac{10}{0 \cdot 5} \right\}$$

sets :

b) For each of the following mappings determine whether it is (i) injective, (ii) surjective. Find the inverse mapping of the mapping which is bijective.

$$K: R \to R \text{ defined by } k(x) = \begin{cases} x^2 - 1, & x \ge 0\\ -x^2 - 1, & x < 0 \end{cases}$$

c) Examine if the following graphs are isomorphic :



3 + 7 + 5

8. a) Solve the following recurrence relation using generating function :

$$a_n - 9a_{n-1} + 20a_{n-2} = 0$$
 for $n \ge 2$ and $a_0 = -3$, $a_1 = -10$.

1217

[Turn over

CS/MCA/SEM-1/M(MCA)-101/2012-13

- b) Show that $n^2 > 2n+1$ for $n \ge 3$ using mathematical induction.
- c) Show that $(p \lor q) \land (\neg p \land \neg q)$ is a contradiction.

7 + 4 + 4

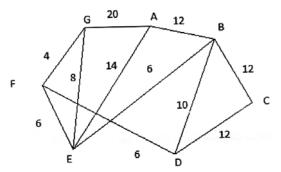
9. a) Write DNF of the following statement :

$$\neg \{\neg (p \leftrightarrow q) \land r\}$$

- b) Verify whether the argument given below is valid or not : All mammals are animals. Some mammals are twolegged. Therefore, some animals are two-legged.
- c) Prove the following equivalence :

$$\neg p \land q \Leftrightarrow \neg (p \lor (\neg p \land q)) \qquad 5 + 5 + 5$$

10. a) Find by Prim's algorithm a spanning tree with minimum weight from the graph given below. Also calculate total weight of spanning tree :



- b) Prove that a connected graph n with n 1 vertices and edges is a tree.
- c) Determine the value of *n* if $4 \times {}^{n}P_{3} = {}^{n+1}P_{3}$. 6 + 6 + 3
- 11. a) Prove that in a bounded distributive lattice (L, \cap, U) an element cannot have more than one complement.
 - b) Find the sum of all four digits for even numbers that can be made with the digits 0, 1, 2, 3, 5, 6 & 8.

c) Define Mealy and Moore machine. Construct a Moore machine from the following Mealy machine :

	Next State				
Present	<i>a</i> = 0		<i>a</i> = 1		
State	State	Output	State	Output	
s ₀	s ₀	1	s_1	0	
s_1	s ₃	1	s ₃	1	
s ₂	<i>s</i> ₁	1	s ₄	1	
s ₃	s_2	0	s ₀	1	

4 + 6 + 5

7

1217

[Turn over