	Ulech
Name:	
Roll No.:	A Annual of Exercising Staff Confession
Inviailator's Sianature :	

DISCRETE MATHEMATICAL STRUCTURES

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The number of arrangements of 25 objects where 7 are of the first kind, 12 are of the second kind, 3 are of the third kind and 4 are of the fourth kind is given by
 - a) $\frac{25!}{7!2!3!4!}$
- b) $\frac{25!}{7!2}$

c) $\frac{25!}{3!4!}$

- d) none of these.
- ii) The coefficient of X^{25} in $(X^3 + X^4 + X^5 + ...)^5$ is
 - a) C(9,5)
- b) C(5, 9)
- c) C(5,5)
- d) C(9, 9).

11918 [Turn over

- iii) Which one is a singleton
 - a) $\{0, 1\}$

b) {1, 11, 111

c) { 0 }

- d) None of these.
- iv) If A is a proper subset of a non-empty set S and two subsets A and A' are non-empty, then which one is true?
 - a) $A \cup A' = S$
- b) $A \cap A' = \phi$
- c) both (a) & (b)
- d) None of these.
- v) In the following graph

 $deg(V_3)$ is

a) 1

b) 0

c) 2

- d) 5.
- vi) If A and B are two subsets, then A and B are said to be disjoint if
 - a) $A \cap B = \emptyset$
- b) $A \cup B = \phi$
- c) $A B = \phi$
- d) none of these.
- vii) If a set $S = \{1, 2, 3\}$, then the power set of S is
 - a) $\{\phi, S\}$

b) { φ }

c) { S }

d) none of these.

a) 72

b) 144

c) 360

- d) None of these.
- ix) In a binary tree, the parent may have
 - a) right child
 - b) left child
 - c) both right and left childs
 - d) right or left or both childs.
- x) The Fuzzy logic is based on mapping the universe of discourse to
 - a) [0, 1]

b) (0, 1)

c) $\{0, 1\}$

- d) none of these.
- xi) In Prime's Algorithm, the weight of non-existing edge is taken as
 - a) 0

b) + ∞

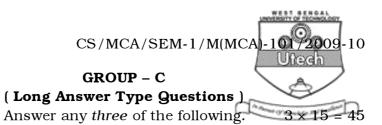
c) 1

- d) none of these.
- xii) Let L be a language given by $L = \{a^n b^n : n \ge 0\}$, then L^2 is equal to
 - a) $\{a^n b^n a^m b^m : n \ge 0, m \ge 0\}$
 - b) $\left\{a^n b^n : n \ge 0\right\}$
 - c) $\left\{a^n b^n a^m b^m : n \ge 0\right\}$
 - d) none of these.

- a) $e \ge n + k$
- b) $e \ge n k$
- c) $e \le n k$
- d) none of these.

GROUP – B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$


- 2. Consider the language $L = \{0^n \ 1^n : n \neq m\}$, find a context free grammar G which generates L.
- 3. Show that the maximum number of edges in a simple graph with n vertices is n (n-1) / 2.
- 4. Let A be some fixed 10-element subset of $S = \{1, 2, 3, 4, 5, \dots, 50\}$. Show that A possesses two different 5-element subsets, the sums of whose elements are equal.
- 5. Solve the following using generating function:

$$a_n - a_{n-1} = 3(n-1), n \ge 1$$
, and where $a_0 = 2$.

6. Find the coefficient of x^{18} in

$$(x + x^2 + x^3 + x^4 + x^5) (x^2 + x^3 + x^4 + x^5 + \dots)^5$$

- 7. Obtain equivalent disjunctive normal form of $\sim G \land (H \Leftrightarrow G)$.
- 8. Design a finite state machine that performs serial addition.

9. a) Let $X = \{1, 2, 3, \dots, 7\}$ and

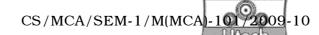
 $R = \{ (x, y) : x - y \text{ is divisible by } 3 \}$. Prove that R is an equivalence relation and draw the relation graph.

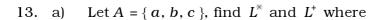
b) Find the transitive closure of a relation R on the set $\{a, b, c\}$, whose relation matrix M_R is given as

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$
 7 + 8

- 10. a) Prove that 21 divides $4^{n+1} + 5^{2n-1}, \forall n > 0$.
 - b) Let M be the finite state machine with state table appearing in the following table:

		f			g	
S A	a	b	С	а	b	С
S_0	S_0	S_0	S_0	0	1	0
S_1	S_0	S_0	S_0	1	1	1
S_2	S_0	S_0	S_0	1	0	0


- i) Find the input set A, the state set S, the output set O, and initial state of M.
- ii) Draw the state diagram of M.


Find the output string for the input string *aabbcc*.

5 + 10

- 11. a) Prove that if there is one and only path between every pair of vertices in a graph G, then G is a tree.
 - b) Describe Kruskal's algorithm to find the Minimal spanning tree in a graph G. Use this algorithm to find minimal spanning tree for the following graph:

- c) Prove that a simple graph with n vertices and k components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges. 5+5+5
- 12. a) Prove that a simple graph has a spanning tree iff it is connected.
 - b) Find the sequence $\{y_x\}$ having the generating function G, given by $G(x) = \frac{3}{1-x} + \frac{1}{1-2x}$.
 - c) By mathematical induction prove that $3^{2n+1} + (-1)^n \ 2 \equiv 0 \ (\text{mod } 5).$ 5 + 5 + 5

i)
$$L = \{b^2\}$$

ii)
$$L = \{a, b\}$$

b) Prove the following identities:

i)
$$\lambda + 1^* (O11)^* (1^* (O11))^* = (1 + O11)^*$$

ii)
$$(1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)*$$

c) Draw the transition diagram of the non-deterministic finite-state automaton whose next state is given below:

A S	0	1
S_0	$\left\{ \boldsymbol{S}_{0},\boldsymbol{S}_{1}\right\}$	$\{\mathbf{S}_2\}$
S_1	Φ	$\{S_1\}$
S_2	$\left\{ \mathbf{S}_{1},\mathbf{S}_{2}\right\}$	Φ

5 + 5 + 5

14. a) Show that $(p \lor q) \land (-p \land \sim q)$ is a contradiction.

b) Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \Rightarrow R, P \Rightarrow M$ and $\sim M$.

c) Determine a DFA from the NDFA $M = \left(\{q_0, \ q_1\}, \ \{0, \ 1\}, \ \delta, \ q_0, \ \{q_1\} \right), \text{ with the state transition }$

function δ as given in the following table :

States	Input		
$\rightarrow q_0$	$\{oldsymbol{q}_0,oldsymbol{q}_1\}$	$\{oldsymbol{q}_1\}$	
$q_{\scriptscriptstyle 1}$ (Final state)	Φ	$\{oldsymbol{q}_0,oldsymbol{q}_1\}$	

5 + 5 + 5

- 15. a) Prove that a simple graph G (V, E) has a spanning tree iff G (V, E) is connected graph.
 - b) Define the following by example:
 - i) DFA
 - ii) NDFA
 - c) If (A, \leq) and (B, \leq) are posets, then prove that $\{(A \times B, \leq)\}$ is a poset with partial order \leq defined as $(a, b) \leq (a, b)$, if $a \leq a$ in A and $b \leq b$ in B. 5 + 5 + 5

11918