Name :	Ulean
Roll No. :	Contraction (19' Know index Field Excellent
Invigilator's Signature :	

CS/MCA/SEM-1/M(MCA)-101/2010-11 2010-11 DISCRETE MATHEMATICAL STRUCTURES

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) A relation *R* is called an equivalence relation if
 - a) *R* is reflexive and transitive
 - b) *R* is reflexive and symmetric
 - c) *R* is reflexive, transitive and symmetric
 - d) *R* is reflexive, anti-symmetric and transitive.
 - ii) If *A* and *B* are nonempty sets. Then cardinality of *A* and *B* are 2 & 3 respectively then cardinality of $A \times B$ is
 - a) 6 b) 5
 - c) 13 d) 4.
 - iii) The coefficient of $x^3y^2z^2$ in $(x+y+z)^9$ is
 - a) (9!)/(7!) b) (9!)/(3! 2! 2!)
 - c) (7!)/(7!) d) (3! 2! 2!)/(7!).

1214

- b) logically equivalent to $p \land q$
- logically equivalent to $p \lor q$ c)
- d) a contradiction.

X)

a)

- Which of the following is/are tautology? xi)
 - $a \lor b \to b \land c$ b) $a \land b \to b \lor c$ a)
 - $a \lor b \to (b \to c)$ d) $a \to b \to (b \to c)$. c)
- xii) The following is the Hass diagram of the poset $|\{a, b, c, d, e\}|$. The poset is

- not a lattice a)
- b) a lattice but not a distributive lattice
- a distributive lattices but not a Boolean algebra c)
- d) a Boolean algebra.

1214

3

- 2. Prove that for a simple graph having *n* vertices and *k* components, the maximum number of edges is $\frac{(n-k)(n-k+1)}{2}.$
- 3. Prove that in a bounded distributive lattice, complement of an element is unique.
- 4. Obtain a conjunctive normal form of $p^{(p = q)}$.
- 5. Design a finite state machine that performs serial addition.
- 6. Draw the transition diagram for the FSA with $I = \{a, b\},\$

\$		
0	a	D
$q_{ m 0}$	$q_{ m 0}$	q_1
q_1	$q_{ m 0}$	q_2
q_2	q_2	q_2

Q = { q_0, q_1, q_2 }, F = { q_0, q_1 } and δ is given by

7. a) In a set A, a relation R is defined as follows

$$R = \{(a_1, a_1), (a_1, a_2), (a_1, a_4), (a_2, a_3), (a_3, a_3), (a_3, a_5), (a_3, a_5), (a_4, a_4), (a_5, a_2)\}$$

Determine the transitive closure of R using Warshall's algorithm.

b) Determine the adjacency matrix for the following graph.

c) Examine whether the following trees are isomorphic

9 + 3 + 3

1214

CS/MCA/SEM-1/M(MCA)-101/2010-11

- 8. a) Evaluate the following postfix expression 24 4 + 3.7/26 4 - +
 - b) Draw the tree for the following infix expression and find the corresponding prefix expression

((A + B)/(C - D) + E). F - G.

c) Draw a spanning tree of the following graph :

4 + 8 + 3

9. a) Apply Prim's algorithm to find a minimum spanning tree from the following weighted graph.

b) Apply BFS algorithm to find a spanning tree of the following graph

- 10. a) What is Language and what is Grammar ? Why Language & Grammar is needed for computer science ?
 - b) Construct the grammar for the language $L = a^n b^n c^m d^m$, m, n, > 0.
 - c) Construct a Moore machine equivalent to the Mealy machine *M* given by the following table :

Present state	Next State			
	<i>a</i> = 0		<i>a</i> = 1	
	state	output	state	output
->q1	q1	1	q2	0
q2	q4	1	q4	1
<i>q</i> 3	q2	1	<i>q</i> 3	1
q4	<i>q</i> 3	0	q1	1

d) Construct a Mealy machine which is equivalent to the Moore machine given by the following table :

Present state	Next State		Output
	<i>a</i> = 0	a = 1	Output
-> q0	q1	q2	1
q1	<i>q</i> 3	q2	0
q2	q2	q1	1
q3	q0	<i>q</i> 3	1

b) Show that $f : R \rightarrow (-1, 1)$ given by $f(x) = \frac{x}{1+|x|}$ is injective.

c) Prove that in a simple graph with *n* vertices and *m* components can have at most $\frac{(n-m)(n-m+1)}{2}$ edges. 7+2+6