	Utech
Name:	
Roll No. :	To sharp Of Exercising and Explored
Invigilator's Signature :	

2012

DISCRETE MATHEMATICAL STRUCTURES

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

$$10 \times 1 = 10$$

- i) Out of the following the singleton set is
 - a) $A = \{x : 3x 2 = 0, x \in Q\}$
 - b) $B = \{x : x^2 1 = 0, x \in R\}$
 - c) $C = \{ x : 30x 59 = 0, x \in \mathbb{N} \}$
 - d) $D = \{x : x^2 1 = 0, x \in Z\}$

where Q, R, N, Z is the set of all rational number, real number, natural number and integers respectively.

1217 Turn over

b)
$$(A-B)\cap (A-C)$$

c)
$$(A-B)\cap (C-A)$$

$$(A-B)\cap (C-A)$$
 d) $(B-A)\cup (A-C)$.

iii) The number of arrangements of 25 objects where 7 are of the first kind, 2 are of the second kind, 3 are of the third kind and 4 are of the fourth kind is given by

a)
$$\frac{25!}{7!2!3!4!}$$

b)
$$\frac{25!}{7!2!}$$

c)
$$\frac{25!}{3!4!}$$

d) none of these.

Out of the following statements the formula for iv) tautology is

a)
$$(p \lor q) \rightarrow q$$

b)
$$p \lor (q \rightarrow p)$$

c)
$$p \lor (p \rightarrow q)$$

c)
$$p \lor (p \rightarrow q)$$
 d) $p \rightarrow (p \rightarrow q)$.

The solution of the recurrence v) relation $a_r - 7a_{r-1} + 10a_{r-2} = 0$ given $a_0 = 0, a_1 = 3$ is

a)
$$5^{-r} - 2^r$$

b)
$$5^r + 2^r$$

c)
$$5^r - 2^r$$

none of these. d)

The type of the grammar, which consists of the vi) productions $s \to aA$, $A \to aAB$, $B \to b$, $A \to a$ is

- vii) Let L be a language given by $L = \{a^n b^n : n \ge 0\}$, then L^2 is equal to
 - a) $\{a^n b^n a^m b^m : n \ge 0, m \ge 0\}$
 - b) $\{a^n b^n : n \ge 0\}$
 - c) $\{a^n b^n a^n b^n : n \ge 0\}$
 - d) none of these.
- viii) The coefficient of X^{25} in $(X^3 + X^4 + X^5 + ...)^5$ is
 - a) C(9,5)
- b) C(5, 9)
- c) C(5,5)
- d) C(9, 9).
- ix) For the mapping $g: [-3,2] \rightarrow R$ defined by g(x) = 3x + 4 for any $x \in [-3,2]$ then image set of g is
 - a) [-5, 10]
- b) [0, 10]
- c) [2, -3]
- d) none of these.
- x) A spanning tree of a connected graph contains
 - a) all the vertices of the graph
 - b) all the vertices and edges of the graph
 - c) a few vertices of the graph
 - d) none of these.
- xi) If a binary tree has 20 pendant vertices then the number of internal vertices of the tree is
 - a) 20

b) 21

c) 23

d) 19.

xii) Haase diagram is given below:

This is a

a) Poset

b) Toset

c) Lattice

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Define adjacency matrix of a simple graph G = (V, E). Write down the adjacency matrix for the following undirected graph:

- 3. By using Principle of Mathematical Induction, prove that $4^{2n+1} + 3^{n+2}$ is an integer multiple of 13 for all positive integers n.
- 4. Let $A = \{x \in R : x \neq 2\}$ & $B = \{x \in R : x \neq 1\}$, and let the two functions $f: A \to B$ & $g: B \to A$ are defined by $f(x) = \frac{x}{x-2}, \forall x \in A \text{ and } g(x) = \frac{2x}{x-1}, \forall x \in B, \text{ then find } f_o g.$ Are the two functions f and g invertible? 2+3

1217

- 5. Over the alphabet $\sum = \{a,b\}$ design a DFA which accepts the language $L = \{w : w \text{ has both an even number of } a$'s and an even number of b's.
- 6. Find an explicit formula for the sequence defined by $a_n = a_{n-1} + 4 \ \forall n \ge 2$ with $a_1 = 2...$.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Determine the intersection of the following two fuzzy sets:

$$A = \left\{ \frac{4}{01}, \frac{6}{0 \cdot 5}, \frac{8}{0 \cdot 6}, \frac{10}{0 \cdot 7} \right\}$$
 and

$$B = \left\{ \frac{0}{0 \cdot 4}, \frac{2}{0 \cdot 6}, \frac{4}{1}, \frac{6}{1}, \frac{8}{0 \cdot 6}, \frac{10}{0 \cdot 5} \right\}.$$

b) For each of the following mappings determine whether it is (i) injective, (ii) surjective. Find the inverse mapping of the mapping which is bijective.

$$K: R \to R$$
 defined by $k(x) = \begin{cases} x^2 - 1, & x \ge 0 \\ -x^2 - 1, & x < 0 \end{cases}$

c) Examine if the following graphs are isomorphic:

3 + 7 + 5

8. a) Solve the following recurrence relation using generating function:

$$a_n - 9a_{n-1} + 20a_{n-2} = 0$$
 for $n \ge 2$ and $a_0 = -3$, $a_1 = -10$.

- b) Show that $n^2 > 2n + 1$ for $n \ge 3$ using mathematical induction.
- c) Show that $(p \lor q) \land (\neg p \land \neg q)$ is a contradiction.

$$7 + 4 + 4$$

9. a) Write DNF of the following statement:

$$\neg \{\neg (p \leftrightarrow q) \land r\}$$

- b) Verify whether the argument given below is valid or not:
 All mammals are animals. Some mammals are two-legged. Therefore, some animals are two-legged.
- c) Prove the following equivalence:

$$\neg p \land q \Leftrightarrow \neg (p \lor (\neg p \land q))$$
 5 + 5 + 5

10. a) Find by Prim's algorithm a spanning tree with minimum weight from the graph given below. Also calculate total weight of spanning tree:

- b) Prove that a connected graph n with n-1 vertices and edges is a tree.
- c) Determine the value of n if $4 \times {}^{n}P_{3} = {}^{n+1}P_{3}$. 6 + 6 + 3
- 11. a) Prove that in a bounded distributive lattice (L, \cap, U) an element cannot have more than one complement.
 - b) Find the sum of all four digits for even numbers that can be made with the digits 0, 1, 2, 3, 5, 6 & 8.

c) Define Mealy and Moore machine. Construct a Moore machine from the following Mealy machine:

	Next State			
Present	<i>a</i> = 0		<i>a</i> = 1	
State	State	Output	State	Output
s_0	<i>s</i> ₀	1	s_{1}	0
s_1	s ₃	1	s ₃	1
s_2	s_1	1	s ₄	1
<i>s</i> ₃	s_2	0	s ₀	1

4 + 6 + 5

=========