

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: MCA-301

OPERATING SYSTEM & SYSTEM SOFTWARE

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following: $10 \times 1 = 10$
 - i) The Operating System acts as a/an
 - a) Resource Manager
 - b) Interface
 - c) both (a) and (b)
 - d) none of these.

3/30010

[Turn over

- ii) Which of the following is responsible for selecting a process among the Swapped-out processes and bringing it in the main memory?
 - a) Short-term scheduler
 - b) Medium-term scheduler
 - c) Long-term scheduler
 - d) None of these.
- iii) A process with multiple threads of control is referred to as a
 - a) Multithreaded process
 - b) Single-threaded process
 - c) Lightweight process
 - d) Heavyweight process.
- iv) Which of the following Operating System modules performs the function of setting up the execution of the selected process on the CPU?
 - a) CPU scheduler
- b) Job scheduler
- c) Dispatcher
- d) None of these.

3/30010

- v) Which of the following is also known as multilevel adaptive scheduling?
 - a) Multilevel queue scheduling
 - b) Multilevel scheduling
 - c) Multilevel feedback queue scheduling
 - d) None of these.
- vi) Which of the following requirement must be met by a solution to critical-section problem?
 - a) Bounded waiting
- b) Progress
- c) Mutual exclusion
- d) All of these.
- vii) Which of the following algorithm suffers from Belady's anomaly?
 - a) Optimal page replacement
 - b) LRU page replacement
 - c) FIFO page replacement
 - d) None of these.
- viii) In resource allocation graph a directed arc from a resource to a process is known as
 - a) Request edge
- b) Claim edge
- c) Assignment edge
- d) none of these.

3/30010

3

[Turn over

ix)	If there are 32 segments, each of size 1K, then	the
	logical address should have	_

- a) 13 bits
- b) 14 bits

c) 15 bits

- d) 16 bits.
- x) Which of the following is used for implementing control synchronization?
 - a) Semaphore
- b) Precedence Graph
- c) Monitors
- d) Peterson's algorithm.
- xi) Dirty bit is used to show the
 - a) page with corrupted data
 - b) the wrong page in memory
 - c) page that is modified after being loaded into cache memory
 - d) page that is less frequently assessed.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. a) What is the difference between Process and Program?
 - b) With the help of a state transition diagram, explain various states of a process. 2 + 3

3/30010

3. Calculate average turnaround time using SJF (Preemptive and non pre-emptive) Scheduling algorithm:

 $2 \times 2^{\frac{1}{2}}$

Process	Arrival Time	CPU Burst
P_0	0	6
P_1	2	4
P_2	3	10
P_3	7	9

- 4. a) Discuss necessary condition for Deadlock.
 - b) What is 'Resource allocation graph'?'

2 + 3

- 5. Differentiate between External fragmentation and Internal fragmentation.
- 6. What is Belady's anomaly? What is thrashing? 3+2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Differentiate between Paging and Segmentation.
 - b) In a demand-paging scheme, how many pages must be loaded from a process to avoid thrashing?
 - c) Consider the following page reference string:

Assume four frames.

How many page faults would occur for OPT replacement algorithm? 4+6+5

3/30010

5

Turn over

- 8. Calculate the average cylinder movements for the following algorithms: 5×3
 - i) FCFS

ii) SSTF

iii) SCAN

iv) C-SCAN

v) LOOK

whereas assume that, Work Queue is 23, 89, 132, 42, 187 and there are 200 cylinders numbered from 0-199 and the disk head stars at number 100.

- 9. a) Explain if it is possible to have a deadlock involving one single process.
 - b) What are the differences between deadlock Preventation and deadlock Avoidance approaches for handling deadlock?
 - c) Consider the following snapshot of a system:

Process	Allocation			Request				Available				
Trocess	A	В	C	D	A	В	C	D	A	В	C	D
P_0	0	0	1	2	0	0	1	2	1	5	2	0
P_1	1	0	0	0	1	7	5	0				
P_2	1	3	5	4	2	3	5	6	`			
P_3	0	6	3	2	0	6	5	2				•
P_4	0	0	1	4	0	6	5	6				

Answer the following questions using Banker's Algorithm:

i) What is the content of matrix need?

- ii) Is the given system in a safe state?
- iii) If a request from P_1 arrives for (0,4,2,0) can the request be granted immediately?

- 10. a) Explain contiguous allocation and linked list allocation for implementing file storage.
 - b) Explain critical section problem. State how to solve critical section problem.
 - c) What are the tasks of loader?
 - d) What are the tasks of linker? 5+6+2+2
- 11. Write short notes on any three of the following: 3×5
 - a) Process control block
 - b) Translation look-aside buffer (TLB)
 - c) Context switching
 - d) Threads
 - e) Direct memory access (DMA).