

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: M(MCA)-301

STATISTICS & NUMERICAL TECHNIQUES

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - Lagrange's interpolation formula is applied in case of
 - a) Equispaced arguments
 - b) Unequispaced arguments
 - c) Both (a) and (b)
 - d) None of these.
 - ii) The condition of convergence of Newton-Raphson method when applied to an equation f(x) = 0 is
 - a) $f'(x) \neq 0$
- b) |f'(x)| < 1
- c) $\{f'(x)\}^2 < |f(x)f''(x)|$ d) $\{f'(x)\}^2 > |f(x)f''(x)|.$

3/30205

[Turn over

iii)	The error in Trapezoidal rule is of order								
	a) h	b)	h^2						
	c) h^3	d)	none of these.						
iv)	Which one of the foll	owin	g is not an iterative						
	method?								
	a) Gauss Elimination	b)	Gauss-Seidel						
	c) Newton-Raphson	d)	None of these.						
v)	If $f(a) \times f(b) < 0$ in Bisect	ion n	nethod after n iteration						
•	the root lies in the interval whose length is								
,	a) $\frac{b-a}{n}$	b)	$\frac{b-a}{2^n}$						
	c) $\frac{b-a}{2n}$	d)	$\frac{(b-a)^{1/n}}{n}.$						
vi)	In Simpson's 1/3rd rule	of ir	ntegration, the number						
	of sub-intervals can nev	er be							
	a) odd	b)	even						
	c) 100	d)	none of these.						
vii)	A random variable X has	s the	following p.d.f :						
. •	f(x) = k, -2 < x < 2								
	= 0, otherwise.								
	Then the value of the co	nstar	nt k is						

3/30205

b)

viii)	The	Poisson	distribution	is	а	limiting	case	of
	Bino	mial distr	ibution when					

- a) n is very large and p is very small
- b) n is very small and p is very large
- c) n, p both are very small
- d) n, p both are very large.

ix) A random variable has a Poisson distribution such that P(1) = P(2). Then the SD of X is

a) 0

b) 2

c) $\sqrt{2}$

d) $\pm \sqrt{2}$.

x) The chance that a leap year selected at random will contain 53 Wednesdays is

a) $\frac{2}{7}$

b) $\frac{1}{7}$

c) $\frac{53}{366}$

d) none of these.

xi) For a pair of mutually exclusive events A and B

- a) $P(A \cap B) = \Phi$
- b) $P(A \cap B) = 1$
- c) $P(A \cap B) = P(A \cup B)$
- d) $P(A \cup B) = \Phi$.

xii) Var(aX + b) is

a) Var(X)

- b) Var (a)
- c) $\alpha \operatorname{Var}(X)$
- d) $a^2 \operatorname{Var}(X)$.

3/30205

3

[Turn over

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Find by suitable interpolation method, the value of f(2.5) from the following table:

x		2	3	, 4	5
f	(x)	14.5	16.3	17.5	18.0

- 3. Find a root of the equation $x^3 4x 9 = 0$ using the method of Bisection.
- A card is drawn at random from an ordinary deck of 52 playing cards. Find the probability that it is (i) an ace (ii) a heart (iii) a nine or a club (iv) neither a spade nor a ten.
- 5. Evaluate $\int_{1}^{2} \log x \, dx$ taking 10 intervals by Simpson's one-third rule.
- 6. Find the mean and median/mode for the following values:

Value range	150 -	155 -	160 -	165 -	170 -	175 -	180 -	185 -
	154	159	164	169	174	179	184	189
Frequency	5	2	6	8	9	11	6	3

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Find the smallest positive root of the given equation $3x \cos x 1 = 0$, correct up to two decimal places by Regula Falsi method.
 - b) Solve the given system of equations by Gauss Elimination method:

$$x + y + z = 9$$
, $2x - 3y + 4z = 13$, $3x + 4y + 5z = 40$.

- c) Find the mean and variance of Binomial distribution. 5+5+5
- a) Verify whether the given systems of equations is deigonally dominant. Hence solve them by Gauss-Siedel method correct to 2 decimal places.

$$-2x+3y+10z=22$$
, $x+10y-z=-22$, $10x+2y+z=9$.

b) Using Runge-Kutta 4th order method solve the differential equation to find $y(0.2)\frac{dy}{dx} = xy$, y(0) = 1,

Take
$$h = 0.1$$
.

$$7 + 8$$

3/30205

5

[Turn over

- a) Deduce the Trapezoidal rule for numerical integration. Also state the expression for the corresponding error term.
 - b) There are three men aged 60, 65 and 70 years old. The probability to live 5 years more is 0.8 for a 60 years old, 0.6 for 65 years old and 0.3 for a 70 years old persons. Find the probability that at least two of the three persons will remain alive 5 years hence.
 - c) Evaluate $3\sqrt{13}$ correct up to three places of decimal using Newton-Raphson method. 5+5+5
- 10. a) Evaluate f (40) using Lagrange's Interpolation formula. Given values as follows:

b) The p.d.f. of a continuous distribution of a random variable X is given by

$$f(x) = \frac{kx^2}{0} < x < 1$$

Find the value of k and distribution function F(x).

c) Using fuler's Modified Method find y (0.2) correct up-to three decimal places from

$$\frac{dx}{dx} = x + y^2$$
, $y(0) = 1$, $h = 0.1$ 5 + 5 + 5

3/30205

11. a) Using L-U factorization method solve the given system of equations:

$$2x-3y+10z=3$$
, $-x+4y+2z=20$, $5x+2y+z=-12$

b) The distribution of heights of men is normally distributed with mean 64.5 "and standard deviation 4.5".

Among 10,000 men find the number of men whose heights are

- (i) less than 69 "but greater than 55.5"
- (ii) less than 55.5 "and
- (iii) more than 73.5" [Given, $\int_0^1 \phi(t) dt = 0.3413 \int_0^2 \phi(z) dt = 0.4772$]
- c) The number of persons X, in a Singapore family chosen at random has the following probability distribution:

X	1	2	3	4	5	6	7	8
P(X)	0.34	4 <i>k</i>	k	0.06	0.02	0.01	0.01	0.01

- i) Find the value of k.
- ii) What is the probability that a family has at most 3 members? 5+5+5