Name :	
Roll No. :	A dama (Y Kambily Rel Excland
Invigilator's Signature :	

CS/MCA/SEM-3/MCA-301/2010-11 2010-11

OPERATING SYSTEM AND SYSTEM SOFTWARE

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - i) In order to make the system deadlock free when a deadlock has occurred what needs to be done ?
 - a) Kill all deadlocked processes
 - b) Kill one process at a time until deadlock is eliminated
 - c) Keep on allocating resources
 - d) None of these.

ii) Banker's algorithm solves the problem of

- a) Deadlock Avoidance b) Deadlock Recovery
- c) Context switching d) Mutual Exclusion.

3071

[Turn over

- iii) Imposing a linear order on all resource types and letting process request resources in increasing order of stock is an example of
 - a) Deadlock Avoidance where the system will never enter an Unsafe State
 - b) Deadlock Avoidance where the maximum need of each job must also be taken into account
 - c) Deadlock Avoidance where hold and wait conditions can not occur
 - d) Deadlock prevention where circular waits for resource can never take place.
- iv) CPU Scheduling is the basis of
 - a) Batch OS b) Real time OS
 - c) Multi-programming d) Mono-programming.
- v) CPU performance is measured through
 - a) Throughput b) MHz
 - c) Flaps d) None of these.
- vi) The processes which are ready and waiting to execute are kept on a List called
 - a) Ready Queue
 - b) Waiting Queue
 - c) Suspended Queue
 - d) none of these.

CS/MCA/SEM-3/MCA **d-11** vii) System calls are usually invoked by using software interrupt

b) polling

a)

- c) an indirect jump
- d) a privileged instruction.
- viii) The page size and frame size
 - a) should be equal
 - need not be equal b)
 - page size > frame size c)
 - frame size > page size. d)
- A task in blocked state ix)
 - a) is executable
 - must still be placed in the run queues b)
 - is waiting temporarily unavailable resources c)
 - d) is running.
- A semaphore count of -n (s = -n) means that the X) blocked queue contains waiting process.
 - a) n + 1b) п
 - n 1 d) 0. c)

3071

[Turn over

 $3 \times 5 = 15$

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following.

- 2. What is race condition ? Explain Peterson' solution for avoiding race condition. 2 + 3
- 3. a) What is a page fault ?
 - b) Under what conditions does page fault occur ? 2 + 3
- 4. a) What is the difference between Process and Program ?
 - b) Draw the process state transition diagram. 2+3
- 5. What is thrashing ? How can the problem of thrashing be prevented ? 2+3
- 6. a) What is a thread ?
 - b) Define the classical "wait" and "signal" operations. 2 + 3

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Using pre-emptive SJF (shortest-job-first) algorithm draw the Gantt chart and calculate the average waiting time and turn-around time for the following processes :

Process	Arrival time	Burst time
P ₀	0	6
P_1	2	4
P_2	3	10
P_3	7	9

- b) Explain short-term, medium-term and long-term schedulings.
- c) What is a semaphore ? Which are the operations done on semaphore ?
- d) Show and explain an implementation of printercomputer [computer produces an item, keeps in a buffer from where the printer (consumer) is picking it up] problem using semaphore. 4 + 3 + 1 + 2 + 5

				CS	6/MC	A/SE	M-3/M0	CA-301	/ 20 1	0-11
a)	Consid	ler a	'clair	n mat	rix', a	an 'al	location	matrix	s' and	l'an
	'availa	ble ve	ector'	for a	set of	fproc	esses.	A Annual (V Karra	inter and Earth	ED
	Cla	im Mat	trix		Allo	cation	Matrix	Avail	able v	ector
	R1	R2	R3		R1	R2	R3	R1	R2	R3
P1	3	2	2	P1	1	0	0	1	1	2
P2	6	1	3	P2	5	1	1			
P3	3	1	4	P3	2	1	1			
P4	4	2	2	P4	0	0	2			

INVERSITY OF TECHNOLOGY

Answer the following questions using the Banker's algorithms :

- i) What are the maximum units of all resources ?
- ii) What are the contents of the matrix need ?
- iii) Is the system in a safe state ? If yes, find the safe sequence.
- iv) A resource request for one of the processes is given. For example, if process P3 request 1 unit of R3, is this request be granted ? If yes, give a < sequence > in which all processes can run to completion.
- b) What are the differences between deadlock prevention and deadlock avoidance approaches for handling deadlock ?
- c) Is it possible to have multiple critical sections in a process ? Explain.

d) Explain the difference between internal fragmentation and external fragmentation. Which one occurs in paging system ? Which one occurs in systems using pure segmentation ? 6+3+2+4

3071

8.

[Turn over

- 9. a) Consider the following page reference during a given time interval for a memory consisting of 5 frames : y, c, z, c, d, a, y, a, e, a, y, f, d, e using the
 - i) FIFO replacement strategy and
 - ii) the LRU replacement strategy.

Compare the results.

- b) A computer whose processes have 512 pages in their address space keeps its page tables in memory. The overhead required for reading a word from the page table is 50 n sec. To reduce this overhead, the computer has a TLB that holds 32 entries and can do look-ups in 5 n sec. What hit rate is needed to reduce the mean overhead to 20 n sec ?
- c) Describe the actions taken by the operating system when a page fault occurs.
- d) Given memory partitions of 100K, 500K, 200K, 300K and 600K (in order). How would each of the First-fit, Best-fit and Worst-fit algorithms place processes of 212K, 417K, 112K and 426K (in order) ? Which algorithm makes the most efficient use of memory ? 5 + 3 + 3 + 4

CS/MCA/SEM-3/MCA-301/2010-11

- 10. a) Explain contiguous allocation and linked list allocation for implementing file storage.
 - b) Access Matrix is used for user authentication which can be implemented by Access List and Capability List. Briefly explain the two implementations.
 - c) Explain, how Test and Set Lock instruction provides mutual exclusion for busy waiting.

Segment	Base	Length
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

d) Consider the following segment table :

What are the physical addresses for the following logical addresses ?

- i) 0, 430
- ii) 1, 12
- iii) 2, 500
- iv) 3, 400.

4 + 3 + 4 + 4

- 11. a) Which problem of one pass assembler motivated the design of two-pass assembler ?
 - b) What are the functions of a loader ?
 - c) What are the phases of compilation ? Explain the functionality of each phase with example.
 - d) What is cross-compiler ? What is linking ?

3 + 2 + 6 + 2 + 2