Name :	
Roll No. :	Advant of Energined
Invigilator's Signature :	

CS/MCA/SEM-5/MCAE-501C/2011-12 2011

PARALLEL PROGRAMMING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

 $10 \times 1 = 10$

- i) NUMA is a kind of
 - a) SISD b) MISD
 - c) SIMD d) MIMD.

ii) In which kind of processor architecture degree is fixed ?

- a) Hypercube b) 2D-mesh
- c) Pyramid d) Hyper tree.

5037

[Turn over

CS/MCA/SEM-5/MCAE-501C/2011-12

- iii) Matrix multiplication in hyper cube network takes time of
 - a) $O(n^2)$ b) $O(n \log n)$
 - c) O(n) d) $O(\log n)$.
- iv) Which of the following is not a synchronizing technique?
 - a) Barrier b) Exclude directive
 - c) Spin lock d) Critical directive.
- v) Omega network is the other name of
 - a) Shuffle-exchange network
 - b) Butterfly network
 - c) Hyper tree network
 - d) De Bruijin's network.

vi) Which of the following is a biotonic sequence ?

a)	1	4	3	7	8	3	6	4
b)	1	2	3	4	5	6	7	8
c)	3	4	5	6	4	5	4	3
d)	4	7	1	8	2	6	9	3

5037

[Turn over

CS/MCA/SEM-5/MCAE-501C/2011-12

- ix) You have a 1024 number of integer array where each integer occupies two bytes. You have 32 processors in hand each having L2 cache (128 bytes). How will you interleave the array ?
 - a) In single integer slices
 - b) In 64 integer slices
 - c) In 128 integer slices
 - d) In 32 integer slices.
- x) Which of the following statements is true ?
 - a) Coarse granularity implies tight coupling
 - b) Granularity has no relation with coupling
 - c) Fine granularity implies tight coupling
 - d) Fine granularity implies loose coupling.

		CS/MCA/SEM-5/MCAE-501C/2001-12		
		GROUP – B		
		(Short Answer Type Questions)		
		Answer any <i>three</i> of the following. $3 \times 5 = 15$		
2.	a)	What are RAM and PRAM machines ?2		
	b)	Explain the difference between the READ, WRITE and		
		EXECUTE steps of a RAM and a PRAM. 3		
3.	a)	Explain the instruction level pipelining mechanism used		
		in parallel computing. 2		
	b)	Derive the ratio for pipelined execution versus non-		
		pipelined execution. 3		
4.	a)	What do we mean by the speed-up of a parallel		
		computation ? What are the factors affecting the		
		speed-up factor ? What are super-linear and sub-linear		
		speed-ups ? 1 + 1 + 1		
	b)	State and prove the Amdahl's law. 2		
5.	a)	Explain the need of cache-coherency in multiprocessor		
		systems. 2		
	b)	Explain any one method of resolving the cache-		
		coherency issue. 3		
6.	Dra	aw the data flow graph of the following expression		
	eva	luation :		
$F = (a - b)^* (a + c) / (d - e).$				

[Turn over

 $3 \times 15 = 45$

GROUP – C

Answer any three of the following.

(Long Answer Type Questions)

- a) What do we mean by concurrent memory access ? Can we read as well as write concurrently to a memory location ?
 - b) Briefly explain the four categories into which concurrent memory accesses can be classified. 2
 - c) What is a conflict concerning concurrent memory access ? Give examples. 2
 - d) Briefly explain any three techniques used to resolve conflicts arising out of concurrent memory accesses. 4
 - e) Write and explain, with a suitable example, the algorithm for the parallel implementation of the Enumeration Sort method.
- 8. a) What do we mean by Parallel Programming ? Why do we need it ? What is a Processing Element ? 2 + 2 + 1
 - b) Explain all the categories of Flynn's classification of computer systems. Give suitable examples. 5
 - c) How do we differentiate between tightly coupled and loosely coupled MIMDs ?3
 - d) What is parallel overhead ? 2

CS/MCA/SEM-5/MCAE-501C/2017-29. a) What is Prefix computation ? Give example
$$2 + 1$$
b) Write and explain, with a suitable example the parallel
implementation of the Prefix Computation method. Show
the intermediate steps. Is the method cost optimal ? $2 + 4 + 4$ c) Draw and explain the basic Von-Neumann Computer
architecture.3d) How are multi-processors different from multi-
computers ?10. a) Explain the VLIW Architecture. Explain how pipelining
is incorporated in VLIW Architecture for a degree
 $m = 3$.f) Make the dependence graph of the following program
segment :segment :8S1 : C = D × E
S2 : M = G + C
S3 : A = B + C
S4 : C = L + M
S5 : F = G + E.11. Write short notes on any *three* from the following :3 × 5
a) Parallel Odd-Even Transposition Sort

- b) Barrier Synchronization
- c) UMA and NUMA architectures
- d) Parallel Gaussian Elimination method
- e) Bernstein's conditions.

5037

[Turn over

1