Name :	<u> </u>
Roll No. :	The Parameter Of Soundary and Excellent
Invigilator's Signature :	

CS/MCA/SEM-5/MCAE-504A/2011-12

2011 COMPILER DESIGN

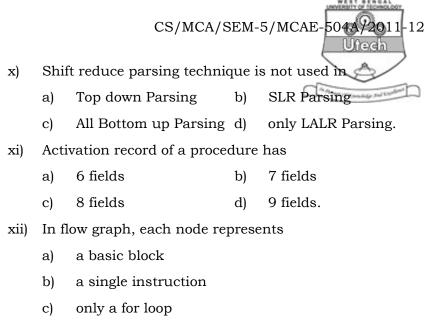
Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :


 $10 \times 1 = 10$

- i) Lex is a
 - a) high level language
 - b) phase of compiler
 - c) lexical analyzer generator
 - d) none of these.
- ii) If $L = L_1 L_2$ and $L_1 = \{ aa, bb \}, L_2 = \{ aa, ab \}$ then the value of *L* is
 - a) $\{aa, bb, aa, ab\}$
 - b) { aaaa, aaab, bbaa, bbab }
 - c) { (aa) ², ab^{3} }
 - d) none of these.

5326

[Turn over

CS/MCA/SEM-5/MCAE-504A/2011-12					
iii)	Wh	ich one is graphical repr	resen		
	a)	DAG	b)	Syntax tree	
	c)	None of these	d)	Both (a) and (b).	
iv)		ich one is used to ke vations?	eep	track of live procedure	
	a)	Control stack	b)	Symbol table	
	c)	Both (a) and (b)	d)	None of these.	
v)	If G is S $\rightarrow a$ S / bS / a / b, then L (G) is				
	a)	{ a, b } *	b)	$\{a, b\}^+$	
	c)	$\{a, b, S\}$	d)	none of these.	
vi)	Context free grammar is accepted by				
	a)	Turing Machine	b)	Finite Automata	
	c)	Push Down Automata	d)	none of these.	
vii)	Divide by zero error in C language is handled by				
	a)	Lexical analysis	b)	Syntax analysis	
	c)	Semantic analysis	d)	Code optimization.	
viii)	Shi	Shift reduce parsing uses			
	a)	Array	b)	Stack	
	c)	Queue	d)	none of these.	
ix)	Mos	st powerful parser is			
	a)	Top down Parser	b)	SLR	
	c)	LALR	d)	Canonical LR.	

d) both for and while loops.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. a) What is heap allocation ?
 - b) What is activation record ?
- 3. Consider the following basic block containing 4 statements :
 - i) d = b + c
 - ii) e = a + b
 - iii) b = b * c
 - iv) a = e d.

Assume that only a and b are live on exit from this block. For each statement, compute the liveness and next use information for the variable used.

5326

[Turn over

- 4. Show with example the difference between inherited and synthesized attributes.
- 5. In LR parser, what are being indicated by two letters 'L' & 'R'? What are the different LR parsers ? What is the basic difference in the implementation of different LR parsing techniques ?
- 6. a) Give an example of semantic error & explain.
 - b) What is quadruple ? Give an example. 2+3

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define handle.
 - b) Explain handle pruning with example.
 - c) Define operator grammar.
 - d) What is left-factoring ? How can you remove the leftfactoring from the grammar ?
 - e) How can you prove that a language is not regular using pumping lemma ?
 2 + 3 + 1 + (1 + 3) + 5

8. Construct a predictive parsing table for the following grammar after eliminating left recursion :

 $E \rightarrow E + T / T$ $T \rightarrow T^* F / F$

 $F \rightarrow (E) / id$

Check whether id * id + id belongs to this or not.

9. a) A grammar is given below :

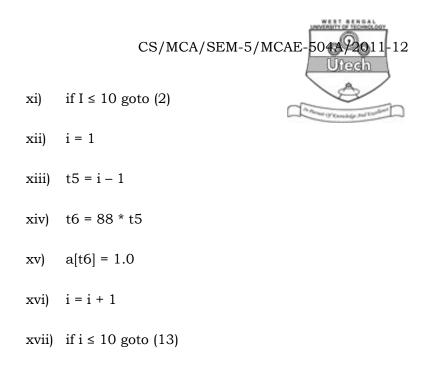
 $S \rightarrow aS ~|~ aSbS ~|~ \varepsilon$

Show that the grammar is ambiguous by constructing two parse trees and two leftmost derivations for **aab**.

b) Compute FIRST and FOLLOW of the following grammar :

 $E \rightarrow TE'$ $E' \rightarrow + TE' | \epsilon$ $T \rightarrow + FT' | \epsilon$ $T \rightarrow * FT' | \epsilon$ $F \rightarrow (E) | id$

10. Write short notes on any *three* of the following : 3×5


- a) Three address code
- b) Peephole optimization
- c) Basic block
- d) Symbol table.

5326

[Turn over

- 11. a) Clearly explain activation record with diagram.
 - b) Explain static and dynamic storage allocation.
 - c) What do you mean by activation of a procedure ? Explain briefly with a suitable example. 6 + 6 + 3
- 12. a) Define basic block and flow graph.
 - b) Write down the process for identifying basic blocks.
 - c) Consider the following code :
 - i) i = 1
 - ii) j = 1
 - iii) t1 = 10 * i
 - iv) t2 = t1 + j
 - v) t3 = 8 * t2
 - vi) t4 = t3 88
 - vii) a[t4] = 0.0
 - viii) j = j + 1
 - ix) if $j \le 10$ goto (3)
 - x) i = i + 1

Find out the basic block and draw the flow graph for the above code. (2 + 2) + 5 + 6