Name :	······		••••••	••
Roll No.		******	•••••••	•••
Invigila	tor's Signature :	••••••		••••
	CS/MCA	/SEM-5	MCAE-50	1A/2010-11
DICT		10-11		
Digil	RIBUTED DATABAS	E MAN	AGEMEN'	r system
Time All	lotted : 3 Hours		Fi	ıll Marks : 70
	The figures in the ma	rgin indic	ate full mark	s.
Candid	dates are required to give			
	as far	as practic	able.	
	GRO	UP – A		
	(Multiple Choic	е Туре Q	uestions)	
l. Ch	oose the correct alternat	ives for th	ne following	$: 10 \times 1 = 10$
i)	DDBMS provides bet	ter	ove	r centralized
	DBMS.			
	a) decentralization			
	b) tuning			
	c) security			
	d) transparency.			
ii)	One of the popular DD	BMS pro	ducts is	
	a) DB2	b)	Oracle	
	c) ZZQ	d)	R*. /	
5023				[Turn over

iii)	"Fr	agmentation ti	ransparency	cannot be	achieved
14.5.	wit	hout location tra	insparency."		
Tarie	a)	True	b)	False	
	c)	Unknown	d)	None of thes	se.
iv)	Glo	bal Schema, Fr	agmentation	Schema and	Allocation
	Sch	ema reside in			
	a)	one of the mad	chines electe	ed as a coordin	nator of the
	b)	the system vir	ually		
	c)	all the machin	es of the DD	BMS network	
	d)	all of these.			
v)	Whi	ch component	has the	right to con	mmunicate
	dist	ributed inform	ation with	another com	ponent of
		erent machine ectly?	for running	distributed t	ransaction
	a)	Root agent	b)	DTM	
	c)	LTM	d)	None of thes	e.
vi)	Hete	erogeneous data	source nee	eds	design
	for c	lesigning DDBM	IS.		
	a)	Bottom-up	b)	Top-down	
	c)	Flat	d)	none of these	e .
5023			2		

	CS/MCA/SEM-5/MCAE-501A/2010-11					
				1.15	1.5	
vii) 3PC protocol	ensures	non-blocking	in	case	of	

a) site

- b) network
- c) partition
- d) coordinator.
- viii) Granularity means
 - a) size of memory

..... failure.

b) size of data

c) locks

- d) \ transaction.
- ix) The highest level in the hierarchy of data organization is called
 - a) data bank
- b) database
- c) data file
- d) data record.
- x) What is the maximum number of functional dependencies (trivial and non-trivial) of a relation R of degree n?
 - a) 2n

b) 2^{2n}

c) n!

d) 2^n .

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Explain unilateral abort capability in the context of 2-phase commit protocol.
- 3. Give a brief comparative study between tightly coupled and loosely coupled architectures.

5023

3

[Turn over

- What is data replication? Explain with example. Describe
 different layers of query processing.
- 5. Explain checkpoint and cold restart of a distributed database system.
- 6. What is flat transaction? Explain with example. What are the factors affecting the allocation? 2+3

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Discuss drawbacks of 2PC protocol in distributed system with an example.
 - b) Does 3PC protocol resolve all the problems? Discuss 3PC protocol with the help of state transition diagram.
 - c) Will 3 PC work in case of partition (type of failure) of network? If not, discuss an algorithm that works in case of partition.

 4 + 8 + 3
- 8. a) "High reliability does not ensure correctness of the distributed system." Comment critically.

- b) Show with the help of a diagram that replicated copy of R2 of fragment R1 is allocated into different sites as R_1^2 and R_2^1 .
- c) When Bottom-up approach of distributed database design preferable over Top-down approach?
- d) Explain the advantage of Remote access via an auxiliary program in case of heterogeneous distributed database system with the help of a diagram. 6+2+3+4
- 9. a) Consider the schema SUPPLIER (SNO, NAME, CITY) and SUPPLY (SNO, PNO, DNO, QUAN) and the following transaction:

Read (tty, \$PNO)

Select Name into \$Name

From SUPPLIER, SUPPLY

Where SUPPLIER.SNO = SUPPLY.SNO

AND SUPPLY.PNO = \$PNo

Write (tty, \$Name)

What is the level of transparency of the above transaction and why?

[Turn over

- b) Discuss best-fit approach for a non-replicated allocation of horizontal fragmentation.
- c) Does any directory file system provide the network transparency? If yes, explain how the transparency is achieved.
- d) What is the most complex effect of update operation in distributed database system? Explain with the help of update subtree.
- 10. a) Describe different types of failures in DDBMS.
 - b) Consider the join $RJN_{A-B}S$. Assume that R and S are at different sites, and disregarded the cost of collection the result of the join. Let $C_0 = 0$ and $C_1 = 1$.

The following profiles are given:

size
$$(R) = 50$$
; card $(R) = 100$; val $(A[R]) = 50$; Size $(A) = 3$

size
$$(S) = 5$$
; card $(S) = 50$; val $(B[S]) = 50$; Size $(B) = 3$

$$R S J_{A-B} S$$
 has selectively $\rho = 0.2$

$$S S J_{B-A} R$$
 has selectively $\rho = 0.8$

Give the transmission cost of:

i) performing the join at the site of R using semi-join reduction

- ii) performing the join at the site of S using semi-join reduction
- iii) performing the join at the site of R without semijoin reduction
- iv) performing the join at the site of S without semijoin reduction.

Which is the best solution?

7 + 8

11. Write short notes on any three of the following:

 3×5

- a) Vertical and derived fragmentation
- b) Distributed deadlock
- c) Transparency
- d) Heterogeneous databases
- e) Non-blocking commitment protocols.